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Introduction to tumor evolution




Definition of tumor evolution

Tumor evolution refers to the dynamic process by which tumors change and adapt over time
in response to various biological, environmental, and therapeutic factors. Tumor evolution
encompasses the genetic and epigenetic alterations that occur within a tumor, as well as the
interactions between the tumor and its microenvironment. This process results in the
acquisition of new biological properties and functions that drive tumor growth, progression,
and resistance to treatment. Tumor evolution is a complex and heterogeneous process that
contributes to the diverse and evolving nature of cancer, and understanding its mechanisms

is critical for developing effective strategies for cancer diagnosis, treatment, and prevention.



The Clonal Evolution of
Tumor Cell Populations

Acquired genetic lability permits stepwise selection
of variant sublines and underlies tumor progression.

Peter C. Nowell

Peter C. Nowell, Science, 1976

The Journal of Heredity 68:3-10. 1977.

“Nothing in biology makes sense except in
the light of evolution”

Theodosius Dobzhansky: 1900-1975

FraNcisco J. AYALA

Dobzhansky, T. Am. Biol. Teach. 35,125-129 (1973).



Importance of understanding tumor
evolution

e Tumor evolution -> heterogeneity; Identify and distinguish the clone heterogeneous

population -> Improving Cancer Diagnosis

e Tumor evolution -> treatment resistant; Inform the development of new effective treatments
-> Improving Cancer Treatment

e Tumor evolution -> diverse subpopulation; guide the development of personalized medicine
approaches -> Personalized Medicine

e Tumor evolution -> cancer recurrence and metastasis; Predict the likelihood of recurrence or

response to therapy -> Improving Cancer Prognosis



Overview of tumor evolution process
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Mechanisms of tumor evolution

MICROENVIRONMENT

CELL
PLASTICITY

GENOMIC

Schematic illustration of the different
ABERRATIONS sz
determinants of tumour evolution,

GENETIC . :
ALTERATIONS ‘ \ . . )
vy < which influence evolutionary
e M o : trajectories through highly

* Aged soma

1
Epigenetic and % -Chart\gestin |nterdependent meChanlsmS, from a
I = nutrients,
o’o

,?0

.,’g,'r

g transcriptomic
;;\ changes
1oY ks Ny

T |
Rk V4

| E
/ /

DNA /

mutations N\

* SNPs

L -

Discordant DNA macro-
inheritance alterations

_ metabolies microscopic (left) to a macroscopic

v (right) scale.

¢ ecDNA *WGD
* mtDNA *SCNA
*s *«BFB
* Chromoplexy

¢ Chromothripsis
W

Vendramin et al. 2021



https://www.embopress.org/doi/full/10.15252/embj.2021108389

Models of tumor evolution
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https://www.embopress.org/doi/full/10.15252/embj.2021108389

Approaches for studying tumor evolution

Bulk sequencing and

clone decomposition Multi-regional sequencing In situ mutation detection Single cell sequencing

Whole exome / whole genome sequencing
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https://www.nature.com/articles/nature10933
https://www.nejm.org/doi/full/10.1056/nejmoa1113205
https://www.nature.com/articles/ng.3391
https://www.nature.com/articles/nature09807

Tracking Cancer Evolution through Therapy
(The TRACERX Study)
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https://aacrjournals.org/cancerdiscovery/article/11/4/916/665830/Tracking-Cancer-Evolution-through-the-Disease

Tumor heterogeneity




Intratumoural heterogeneity: Spatial vs

Temporal

a Spatial heterogeneity b Temporal heterogeneity

First-line =——> Second-line =——> Third-line

a | Spatial heterogeneity denotes an
uneven distribution of cancer
subclones across different regions of
the primary tumour and/or metastatic
sites

b | Temporal heterogeneity refers to
variations in the molecular makeup of a
single lesion over time

(Dagogo-Jack and Shaw 2018)



https://www.nature.com/articles/nrclinonc.2017.166

Source of intratumor heterogeneity
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https://www.sciencedirect.com/science/article/pii/S1535610820301471?via%3Dihub
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To account for varying purity, ploidy and
sequencing depth in the analyzed samples, we
o I Y — calculated the number of reads per tumor
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Overview and characterization of ITH across cancer types
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https://www.sciencedirect.com/science/article/pii/S0092867421002944?via%3Dihub

ILLusion of clonality

A mutation that is clonal in the sequenced tumor sample but is not clonal in the whole tumor
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https://www.nature.com/articles/s41592-020-01013-2/figures/2

Multi-regions DNA sequencing for studying ITH
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https://www.nature.com/articles/s41467-020-16546-5

ITH by methylation

Intratumoral heterogeneity
of DNA methylation profiles

16 13-1070 2
16081178,

1179

0.0

Beta value

0.5 1.0

D

Pairwise distance based on SCNA profile

Distance between two tumor samples
of the same subject

0.7 q
0.6 4
0.5 A
0.4 4
0.3 4
0.2 4

0.1

Spearmans Correlation ‘Test  *
ho=0.586, P <1x107'®

0.0 4

%
et Y, | — LOWESSFit

5 10 15 20

Pairwise distance based on methylation of

CpG probes across the whole genome

N1 Methylation tree

IGC-11-1044
TN
T8 17 : [ T7__.
1 ! T8/Te
| T6
Wk
1
W T3
7
T4 LS /
\‘ T4
\ /
\
‘\ T2
\T5)
\ v
\
\
\
NT
CNV tree

Consensus tree

congruent patterns of genomic and epigenomic evolution

b

APITH

0.5 A

0.4 4

0.3 1

0.2

0.1 1

0.0 1

1
1
1
1
1
1

<

naive ITH

2 3 4 5 6 7
Number of samples

0.5 4

0.4 4

0.3 4

0.2 4

0.1 4

0.0

2 3 4 5 6 7
Number of samples

Developed an average pairwise ITH index (APITH), which
does not depend on the number of samples per tumor.
(Hua et al. 2020)



https://www.nature.com/articles/s41467-020-16295-5

Cancer subclonal reconstruction from DNA sequencing




Tumor purity and ploidy

Purity (a.k.a. cellularity, or aberrant cell fraction)

The proportion of cells in a sample that are tumor cells

Ploidy

The average total copy number across the genome



Tumor purity and ploidy

e Simulate a range of purity and overall
ploidy values
e Calculate the major/minor copy
number of each locus
e Determine which purity/ploidy values
give the most optimal solution, using
a metric such as:
o sum of Euclidean distances to
integer (i.e. clonal) values (ASCAT)
o  proportion of aberrant genome
that is clonal (Battenberg)
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Ploidy: 1.77, aberrant cell fraction: 80%, goodness of fit: 98.2%
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Allele-specific copy number analysis of tumors, Van Loo et al., PNAS 2010

https://doi.org/10.1073/pnas.1009843107



https://doi.org/10.1073/pnas.1009843107

Tumor purity and ploidy

Calculating the major/minor copy number of
each locus:

i = genomic locus

r=Log R (log-transformed total read depth)
b = BAF (B-allele frequencyj, i.e. relative
presence of two alternative nucleotides)

p = purity

Y = ploidy

Y = constant: drop in Log Rin case of a
deletion in a 100% pure sample

n, = major copy number

ng = minor copy number

<2(1 -p) + [\)p(nA,i + ”B,i)>

r; = ylog (1]

o 1—p+pnp;
©2-2p+p(na; +npy)

[2]

Allele-specific copy number analysis of tumors, Van Loo et al., PNAS 2010
https://doi.org/10.1073/pnas.1009843107
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Variant allele fraction or frequency (VAF) Cellular prevalence (CP) Cancer cell fraction (CCF)

The fraction of mutated reads for a given The fraction of all cells (both tumor The fraction of cancer cells from the sequenced

variant, which is a readout of the proportion and admixed normal cells) from the sample carrying a set of SNVs, that is, CCF =

of DNA mutated in the sequenced tissue. sequenced tissue carrying a set of CP/purity. It can be inferred from the VAF (f)
SNVs. given a sample purity (p), the local copy

number (NT) and the inferred multiplicity m of
the mutations:
CCF = mLp (oNr +2(1 = )

Examples:
o Purity: 0.21189
chr pos WT count mut count total copy number multiplicity
a1 63040670 73 11 2 1
b 1 155951020 96 22 3 ?

VAF:

Ploidy: 2.10, aberrant cell fraction: 21%, goodness of fit: 96.8%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920282 X

CCF:




Variant allele fraction or frequency (VAF) Cellular prevalence (CP) Cancer cell fraction (CCF)

The fraction of mutated reads for a given The fraction of all cells (both tumor The fraction of cancer cells from the sequenced

variant, which is a readout of the proportion and admixed normal cells) from the sample carrying a set of SNVs, that is, CCF =

of DNA mutated in the sequenced tissue. sequenced tissue carrying a set of CP/purity. It can be inferred from the VAF (f)
SNVs. given a sample purity (p), the local copy

number (NT) and the inferred multiplicity m of
the mutations:
CCF = mLp (oNr +2(1 = )

Examples:
o Purity: 0.21189
chr pos WT count mut count total copy number multiplicity
a1 63040670 11 2 1
11
b 1 155951020 96 22 3 ? VAF: = 0.130952
+11
Ploidy: 2.10, aberrant cell fraction: 21%, goodness of fit: 96.8%
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Variant allele fraction or frequency (VAF) Cellular prevalence (CP) Cancer cell fraction (CCF)

The fraction of mutated reads for a given The fraction of all cells (both tumor The fraction of cancer cells from the sequenced

variant, which is a readout of the proportion and admixed normal cells) from the sample carrying a set of SNVs, that is, CCF =

of DNA mutated in the sequenced tissue. sequenced tissue carrying a set of CP/purity. It can be inferred from the VAF (f)
SNVs. given a sample purity (p), the local copy

number (NT) and the inferred multiplicity m of

the mutations:
CCE = mLp (pN1 4+ 2(1 — p))

Examples:
Purity:
chr pos WT count mut count total copy number multiplicity
a1 63040670 73 11 2 1
11
b 1 155951020 96 22 3 ? VAF: = 0.130952
73+11
Ploidy: 2.10, aberrant cell fraction: 21%, goodness of fit: 96.8%

ot 1 2 3 4 5 6 2 8 9 10 11 12 13 14 15 16 17 18 1920202 X

< 0.130952

o] o — x2+2(1- )) = 1.236041

o 1x

a

Color coding: VAF  Total Copy Number  Multiplicity



Variant allele fraction or frequency (VAF)

The fraction of mutated reads for a given
variant, which is a readout of the proportion
of DNA mutated in the sequenced tissue.

Cellular prevalence (CP)

The fraction of all cells (both tumor
and admixed normal cells) from the
sequenced tissue carrying a set of
SNVs.

Cancer cell fraction (CCF)

The fraction of cancer cells from the sequenced
sample carrying a set of SNVs, that is, CCF =
CP/purity. It can be inferred from the VAF (f)
given a sample purity (p), the local copy
number (NT) and the inferred multiplicity m of

the mutations:
CCE = mLp (pN1 4+ 2(1 — p))

Examples:
o Purity: 0.21189
chr pos WT count mut count total copy number multiplicity
a1 63040670 73 11 2 1
22
b 1 155951020 22 3 ? VAF: = 0.186441
+22
Ploidy: 2.10, aberrant cell fraction: 21%, goodness of fit: 96.8%
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<
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Variant allele fraction or frequency (VAF) Cellular prevalence (CP) Cancer cell fraction (CCF)

The fraction of mutated reads for a given The fraction of all cells (both tumor The fraction of cancer cells from the sequenced

variant, which is a readout of the proportion and admixed normal cells) from the sample carrying a set of SNVs, that is, CCF =

of DNA mutated in the sequenced tissue. sequenced tissue carrying a set of CP/purity. It can be inferred from the VAF (f)
SNVs. given a sample purity (p), the local copy

number (NT) and the inferred multiplicity m of

the mutations:
CCE = mLp (pN1 4+ 2(1 — p))

Examples:
Purity:
chr pos WT count mut count total copy number multiplicity
a1 63040670 73 11 2 1
22
b1 155951020 96 22 3 2 VAF: = 0.186441
96 +22
Ploidy: 2.10, aberrant cell fraction: 21%, goodness of fit: 96.8%
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Clustering SNVs by CCF

Examples from DPClust
Sample with two clusters identified -
one clonal and one subclonal:

I

Sample with one clonal cluster identified:
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Principles for creating a phylogenetic tree

Fertilized egg .
<— Trisomy 1q

Most recent common ancestor (MRCA). The MRCA is the most

PIK3CA, TP53,
GATA3, NCOR1T, 100% tumor cells;
SMAD4&MLL3 ~27,000 mutations
metetens recent cell that spawned a set of cells. By extension, the MRCA
also refers to the genotype of that ancestor cell. The MRCA of a
_luster Most t . . . . o e
66% cells; (@) common ancestor given tumor is sometimes used to implicitly refer to the MRCA of
few mutations s .
- 3:!;;;' s, all cells in a set of sequenced samples. Note that the MRCA of a
i ,))(;, . .
2§ e tumor sample (or set of samples) is not necessarily the MRCA of
g I . . . .
] ‘C'““e'B the whole tumor, owing to the illusion of clonality.
3 3(:::;0;{ 14% cells
Cluster C .
Some of
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~10-14% cells
Tetraploid with loss

of chr7 (x2), chr2 (x2)
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The Life History of 21 Breast Cancers, Nik-Zainal et al., 2012, Cell, doi: 10.1016/j.cell.2012.04.023


https://doi.org/10.1016%2Fj.cell.2012.04.023

Principles for creating a phylogenetic tree

Pigeonhole principle. In the context of subclonal reconstruction, the sum of CCFs of
branching subclones should be less than or equal to the CCF of their parent clone. Indeed, if it
was greater, this would mean that mutations have occurred independently in branching
lineages. However, according to the infinite sites hypothesis, the same set of random
mutations is unlikely to have happened twice independently. Therefore, the smaller subclone
must be a descendant of the bigger subclone; that is, they are linear subclones, which is
compatible with the infinite sites hypothesis.

a) non feasible b) non feasible c) feasible
© 9 - tumour cells: 100 © 1+ tumour cells: 100 © 1 tumour cells: 100
* subclone A: 70 . * subclone A: 70 . * subclone A: 70 .
o ] * subcione B: 60 B o | * subcione B: 60 o |+ subcione B: 60 A
R NEE B £ &
< s S
g S 4 g x g g B
3 g 3 8- é 2 -
g 2 4 g 8 - E 8-
8 - 8 - 8 J
- T Y T T T T Sl | T T T T T 2l | T T T T T
0 20 40 60 80 100 20 40 60 80 100 0 20 40 &0 80 100
number of cells numrber of cells number of cells

Cancer Evolution: Mathematical Models and Computational Inference, Beerenwinkel et al., 2015, Systems Biology, doi: 10.1093/sysbio/syu081



https://doi.org/10.1093%2Fsysbio%2Fsyu081

Principles for creating a phylogenetic tree

Crossing rule. When performing multisample or multiregion sequencing, when clone A and B are descendant of clone C and the CCF
of clone A'is higher than the CCF of clone B in one sample but the opposite is true in another sample, then clone A and B must be
branching subclones. This rule stems from the more general rule that the shared subclones across samples must have arisen from the
same phylogeny, which further constrains the possible phylogenetic relationships between subclones.
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a descendent clone must exhibit a smaller cellular prevalence than its ancestor within each and every tumor region



Standard workflow for subclonal reconstruction

e Sequence
o ...tumours at high depth, multiple regions if possible
o ...matched normal tissue
e Call somatic variants
e Reconstruct allele-specific copy number profiles
o  Consider using multiple copy number callers, to handle ambiguity
o  Check solutions (e.g. for correct CP and WGD status), refit if necessary
e Reconstruct subclonal SNV clustering
e Where possible, reconstruct phylogenies
o  Multi-region sampling helps
o  Phasing information and single-cell sequencing can provide further evidence

Recommended reading for further details: "A practical guide to cancer subclonal reconstruction from DNA sequencing", Tarabichi et al., nature
methods, 2021



https://www.nature.com/articles/s41592-020-01013-2
https://www.nature.com/articles/s41592-020-01013-2

Timing somatic events in the evolution of cancer




Timing of somatic driver events
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The evolutionary history of 2,658 cancers, Gerstung et al., 2020, Nature, doi: 10.1038/s41586-019-1907-7
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Timing of copy humber gains

Hasaive =2 E 0.25 We can use mutation VAFs to infer:
ONV after SSM = E 0.4 Whether a SCNA (aka CNV) has occurred

e Relative order of the SCNA and
CNV before SSM [:> § 0.2 mutation
| @ o e Whetherthe SCNA occurs in a different
branch than SV @i@ = ' subclone (i.e. set of cells) than the

mutation
225 B .«

Normal Cancer Genomes VAF
Read

Strand of SCNA relative to mutation

PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors, Deshwar et al., Genome Biology, 2015,
doi: 10.1186/s13059-015-0602-8
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Timing of mutational signhatures
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permits visualization of processes that have occurred
later in cancer evolution after primary diagnosis

Koh Gene, et al., Nature Reviews Cancer, 2021

Sequencing at multiple time points can be
highly informative


https://www.nature.com/articles/s41568-021-00377-7

Timing of mutational signhatures
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Timing of mutational signhatures
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Chronological time estimates

e Previous “timings” are
relative, not chronological

e  Mutation rates change over
time in cancers

e CpG>TpG are relatively
stable, clock-like mutations

e However, they have also
been shown to increase
modestly in cancer cells vs
normal

e We can count these
mutations to estimate
chronological timing

e We should account fora
range of possible increases in
CpG>TpG mutation rate
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Median latency between the MRCA and the last detectable subclone before
diagnosis for different CpG>TpG mutation rate changes in n = 1,921
non-hypermutant samples with low tumour in normal contamination and at
least 5 cases per cancer type.

The evolutionary history of 2,658 cancers, Gerstung et al., 2020, Nature, doi:
10.1038/s41586-019-1907-7
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Reconstructing the life history of tumors
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Recommended reading for an in-depth study using many of these evolutionary timing methods:
"The evolutionary history of 2,658 cancers", Gerstung et al., 2020, Nature,
https://www.nature.com/articles/s41586-019-1907-7

A review of cancer genomic evolution:
"Evolution of the cancer genome", Yates & Campbell, 2012, Nature Reviews Genetics,
https://www.nature.com/articles/nrg3317
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https://www.nature.com/articles/nrg3317

Evolutionary dynamics extrachromosomal
DNA (ecDNA) in human cancers




Extrachromosomal DNA (ecDNA)

ecDNA are large units of circular DNA that reside within
the nuclei of cells yet are physically distinct from
chromosomal DNA.

They often range in size from 1-5 mega base pairs in
length and can encode one or more full-length genes
and regulatory regions.

ecDNA have accessible chromatin and are highly
transcribed, meaning they are fully functional and often
more active than chromosomally located genes.

ecDNA are one of the primary locations for high copy
number focal oncogene amplifications in cancer cells;
in fact, more than half of all high copy number
amplifications in cancer occur on ecDNA.

Chromosome

ecDNA observed by scanning electron microscope image
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Timeline of landmark

ecDNA explorations

*More recurrent APOBEC3 kataegis was observed across
circular ecDNA regions compared to other forms of
structural variation

*Recurrent kyklonic events were increased within or
near known cancer-associated genes including TP53,
CDK4 and MDM2, etc.


https://www.ijbs.com/v18p4006.htm

ecDNA is a cancer specific phenomenon

Absent in normal healthy tissue, ecDNA are found
in 14% of primary cancers and >40% of metastatic
cancers.

Oncogene amplification driven by ecDNA

ecDNA frequency across primary cancers
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https://www.nature.com/articles/s41588-020-0678-2

The origin of ecDNA: Chromosome instability

e Chromothripsis

e Breakage-fusion-bridge (BFB) cycles

e Slight damage to DNA and relegation

Genomic instability DSBs and self-joining

due to cellular crisis lead to circular DNA [ ] Replication fork Stalling and template

switching
(Verhaak et al. 2019)

(Lietal.2022)


https://www.nature.com/articles/s41568-019-0128-6
https://www.ijbs.com/v18p4006.htm

Model of the rapid accumulation of ecDNA in cancer
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The evolutionary dynamics of extrachromosomal
DNA in human cancers
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THANKS FOR YOUR ATTENTION!
Questions?

Next: Practical session 9 (10:45 am)

e Tumor evolution analysis using NGSpurity and Palimpsest
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