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Introduction to tumor evolution



Definition of tumor evolution

Tumor evolution refers to the dynamic process by which tumors change and adapt over time 

in response to various biological, environmental, and therapeutic factors. Tumor evolution 

encompasses the genetic and epigenetic alterations that occur within a tumor, as well as the 

interactions between the tumor and its microenvironment. This process results in the 

acquisition of new biological properties and functions that drive tumor growth, progression, 

and resistance to treatment. Tumor evolution is a complex and heterogeneous process that 

contributes to the diverse and evolving nature of cancer, and understanding its mechanisms 

is critical for developing effective strategies for cancer diagnosis, treatment, and prevention.



Peter C. Nowell, Science, 1976

Dobzhansky, T. Am. Biol. Teach. 35, 125–129 (1973).



Importance of understanding tumor 
evolution

● Tumor evolution -> heterogeneity;  Identify and distinguish the clone heterogeneous 

population -> Improving Cancer Diagnosis 

● Tumor evolution -> treatment resistant;  Inform the development of new effective treatments  

-> Improving Cancer Treatment

● Tumor evolution -> diverse subpopulation; guide the development of personalized medicine 

approaches  -> Personalized Medicine

● Tumor evolution -> cancer recurrence and metastasis;  Predict the likelihood of recurrence or 

response to therapy -> Improving Cancer Prognosis



Overview of tumor evolution process

Stratton et al., Nature, 2009



Schematic illustration of the different 
determinants of tumour evolution, 
which influence evolutionary 
trajectories through highly 
interdependent mechanisms, from a 
microscopic (left) to a macroscopic 
(right) scale. 

Mechanisms of tumor evolution

Vendramin et al. 2021

https://www.embopress.org/doi/full/10.15252/embj.2021108389


Models of linear evolution (A), 
branched evolution (B), 
macroevolution (C) and neutral 
evolution (D) described by Muller 
plots representing dynamic changes 
in clonal size over time (left), clonal 
lineages and phylogenetic trees 
(centre) and changes in the number 
of alterations over time (right). 
Colours indicate different clones. 

Models of tumor evolution

Observation at the time of the diagnosis

Vendramin et al. 2021

https://www.embopress.org/doi/full/10.15252/embj.2021108389


Approaches for studying tumor evolution
Bulk sequencing and 
clone decomposition Multi-regional sequencing In situ mutation detection Single cell sequencing

(Shah et al. 2012) (Gerlinger et al. 2012) (Janiszewska et al. 2015) (Navin et al. 2011)

https://www.nature.com/articles/nature10933
https://www.nejm.org/doi/full/10.1056/nejmoa1113205
https://www.nature.com/articles/ng.3391
https://www.nature.com/articles/nature09807


Tracking Cancer Evolution through Therapy 
(The TRACERx Study)

Tumor evolution in NSCLC. Evolutionary processes in NSCLC are outlined. 

Top, subclonal dynamics over time can be represented by a fish plot; 

however, a single sample in time provides only a snapshot. From this 

snapshot, tumor phylogeny can be inferred. Bottom, evolutionary 

processes generating immune and genomic heterogeneity are described as 

part of a “tree.” Events that occur in the “trunk” are clonal, i.e., they occur 

within every cell in the tumor. Through tumor evolution, subclones can 

emerge through selection; events that occur in these subclones are known 

as “branch” events.

By integrating multiregion sequencing of primary tumors with longitudinal 

sampling of a prospectively recruited patient cohort, cancer evolution can 

be tracked from early- to late-stage disease and through therapy. 

(Bailey et al. 2021)

https://aacrjournals.org/cancerdiscovery/article/11/4/916/665830/Tracking-Cancer-Evolution-through-the-Disease


Tumor heterogeneity



a | Spatial heterogeneity denotes an 
uneven distribution of cancer 
subclones across different regions of 
the primary tumour and/or metastatic 
sites

b | Temporal heterogeneity refers to 
variations in the molecular makeup of a 
single lesion over time

Intratumoural heterogeneity: Spatial vs 
Temporal

(Dagogo-Jack and Shaw 2018)

https://www.nature.com/articles/nrclinonc.2017.166


Source of intratumor heterogeneity

Microenvironmental Heterogeneity

(Marusyk et al. 2020)

https://www.sciencedirect.com/science/article/pii/S1535610820301471?via%3Dihub


Power analysis for study intra-tumor heterogeneity
To account for varying purity, ploidy and 
sequencing depth in the analyzed samples, we 
calculated the number of reads per tumor 
chromosomal copy (nrpcc) to uniformly 
quantify the power to detect subclonal mutation 
clusters.

where ρ is the determined purity of the 
sample and ψt and ψn denote the ploidy of 
the matching tumor and normal sample, 
respectively. As we assume all germline 
samples to be diploid, ψn is set to two by 
default. We verified that the nrpcc is a strong 
factor influencing the number of identified 
subclones in a sample, whereas the total 
number of mutations identified does not 
impact the reconstruction



Overview and characterization of ITH across cancer types

Pervasive ITH across cancer types 
Evidence of ITH is shown for 1,705 samples 
with sufficient power to detect subclones at 
a CCF of more than 30%

Correlation in ITH between 
SNVs, indels, CNAs, and SVs 

(Dentro et al. 2021)

https://www.sciencedirect.com/science/article/pii/S0092867421002944?via%3Dihub


A mutation that is clonal in the sequenced tumor sample but is not clonal in the whole tumor 

Illusion of clonality

(Tarabichi et al. 2021)

Cancer cell fraction (CCF)

In tumor level, clone mutations are mutations with CCF =1 among all sequenced regions

https://www.nature.com/articles/s41592-020-01013-2/figures/2


Multi-regions DNA sequencing for studying ITH

congruent patterns of genomic 
and epigenomic evolution

a single biopsy would be sufficient to identify the 
important genetic drivers

(Zhu et al. 2020)

https://www.nature.com/articles/s41467-020-16546-5


ITH by methylation

(Hua et al. 2020)

Intratumoral heterogeneity 
of DNA methylation profiles

congruent patterns of genomic and epigenomic evolution

Developed an average pairwise ITH index (APITH), which 
does not depend on the number of samples per tumor.

https://www.nature.com/articles/s41467-020-16295-5


Cancer subclonal reconstruction from DNA sequencing



Tumor purity and ploidy

Purity (a.k.a. cellularity, or aberrant cell fraction)

The proportion of cells in a sample that are tumor cells 

Ploidy

The average total copy number across the genome



Tumor purity and ploidy

● Simulate a range of purity and overall 
ploidy values

● Calculate the major/minor copy 
number of each locus

● Determine which purity/ploidy values 
give the most optimal solution, using 
a metric such as:

○ sum of Euclidean distances to 
integer (i.e. clonal) values (ASCAT)

○ proportion of aberrant genome 
that is clonal (Battenberg)

Allele-specific copy number analysis of tumors, Van Loo et al., PNAS 2010 
https://doi.org/10.1073/pnas.1009843107

https://doi.org/10.1073/pnas.1009843107


Tumor purity and ploidy

Calculating the major/minor copy number of 
each locus:

● i = genomic locus
● r = Log R (log-transformed total read depth)
● b = BAF (B-allele frequency, i.e. relative 

presence of two alternative nucleotides)
● ρ = purity
● ψ = ploidy
● γ = constant: drop in Log R in case of a 

deletion in a 100% pure sample
● nA = major copy number
● nB = minor copy number

Allele-specific copy number analysis of tumors, Van Loo et al., PNAS 2010 
https://doi.org/10.1073/pnas.1009843107

https://doi.org/10.1073/pnas.1009843107


Variant allele fraction or frequency (VAF)

The fraction of mutated reads for a given 
variant, which is a readout of the proportion 
of DNA mutated in the sequenced tissue. 

Cellular prevalence (CP)

The fraction of all cells (both tumor 
and admixed normal cells) from the 
sequenced tissue carrying a set of 
SNVs. 

   

Cancer cell fraction (CCF)

The fraction of cancer cells from the sequenced 
sample carrying a set of SNVs, that is, CCF = 
CP/purity. It can be inferred from the VAF (f) 
given a sample purity (ρ), the local copy 
number (NT) and the inferred multiplicity m of 
the mutations:

chr pos WT count mut count total copy number multiplicity

1 63040670 73 11 2 1

1 155951020 96 22 3 ?

Examples:

 

a

b

Purity:    0.21189

VAF: 

CCF: 



   

chr pos WT count mut count total copy number multiplicity

1 63040670 73 11 2 1

1 155951020 96 22 3 ?

Purity:    0.21189

VAF: 

CCF: 

11
                                                  =    0.130952

73 + 11

Examples:

 

a

b

a

Variant allele fraction or frequency (VAF)

The fraction of mutated reads for a given 
variant, which is a readout of the proportion 
of DNA mutated in the sequenced tissue. 

Cellular prevalence (CP)

The fraction of all cells (both tumor 
and admixed normal cells) from the 
sequenced tissue carrying a set of 
SNVs. 

Cancer cell fraction (CCF)

The fraction of cancer cells from the sequenced 
sample carrying a set of SNVs, that is, CCF = 
CP/purity. It can be inferred from the VAF (f) 
given a sample purity (ρ), the local copy 
number (NT) and the inferred multiplicity m of 
the mutations:

Color coding:      WT Count      Mut Count      Purity      VAF      Total Copy Number      Multiplicity



   

chr pos WT count mut count total copy number multiplicity

1 63040670 73 11 2 1

1 155951020 96 22 3 ?

Purity:    0.21189

VAF: 

CCF: 

11
                                                  =    0.130952

73 + 11

  0.130952
                         (  0.21189 x 2 + 2(1 - 0.21189) )   =   1.236041  
1 x 0.21189

Examples:

 

a

b

a

Variant allele fraction or frequency (VAF)

The fraction of mutated reads for a given 
variant, which is a readout of the proportion 
of DNA mutated in the sequenced tissue. 

Cellular prevalence (CP)

The fraction of all cells (both tumor 
and admixed normal cells) from the 
sequenced tissue carrying a set of 
SNVs. 

Cancer cell fraction (CCF)

The fraction of cancer cells from the sequenced 
sample carrying a set of SNVs, that is, CCF = 
CP/purity. It can be inferred from the VAF (f) 
given a sample purity (ρ), the local copy 
number (NT) and the inferred multiplicity m of 
the mutations:

Color coding:      WT Count      Mut Count      Purity      VAF      Total Copy Number      Multiplicity   



   

chr pos WT count mut count total copy number multiplicity

1 63040670 73 11 2 1

1 155951020 96 22 3 ?

Purity:    0.21189

VAF: 

CCF: 

22
                                                  =    0.186441

96 + 22

Examples:

 

a

b

b

Variant allele fraction or frequency (VAF)

The fraction of mutated reads for a given 
variant, which is a readout of the proportion 
of DNA mutated in the sequenced tissue. 

Cellular prevalence (CP)

The fraction of all cells (both tumor 
and admixed normal cells) from the 
sequenced tissue carrying a set of 
SNVs. 

Cancer cell fraction (CCF)

The fraction of cancer cells from the sequenced 
sample carrying a set of SNVs, that is, CCF = 
CP/purity. It can be inferred from the VAF (f) 
given a sample purity (ρ), the local copy 
number (NT) and the inferred multiplicity m of 
the mutations:

Color coding:      WT Count      Mut Count      Purity      VAF      Total Copy Number      Multiplicity



   

chr pos WT count mut count total copy number multiplicity

1 63040670 73 11 2 1

1 155951020 96 22 3 2

Purity:    0.21189

VAF: 

CCF: 

22
                                                  =    0.186441

96 + 22

  0.186441
                         (  0.21189 x 3 + 2(1 - 0.21189) )   =   0.973114  
2 x 0.21189

Examples:

 

a

b

b

Variant allele fraction or frequency (VAF)

The fraction of mutated reads for a given 
variant, which is a readout of the proportion 
of DNA mutated in the sequenced tissue. 

Cellular prevalence (CP)

The fraction of all cells (both tumor 
and admixed normal cells) from the 
sequenced tissue carrying a set of 
SNVs. 

Cancer cell fraction (CCF)

The fraction of cancer cells from the sequenced 
sample carrying a set of SNVs, that is, CCF = 
CP/purity. It can be inferred from the VAF (f) 
given a sample purity (ρ), the local copy 
number (NT) and the inferred multiplicity m of 
the mutations:

Color coding:      WT Count      Mut Count      Purity      VAF      Total Copy Number      Multiplicity   



Examples from DPClust

Sample with one clonal cluster identified:
Sample with two clusters identified -
one clonal and one subclonal:

Clustering SNVs by CCF



Principles for creating a phylogenetic tree

Most recent common ancestor (MRCA). The MRCA is the most 
recent cell that spawned a set of cells. By extension, the MRCA 
also refers to the genotype of that ancestor cell. The MRCA of a 
given tumor is sometimes used to implicitly refer to the MRCA of 
all cells in a set of sequenced samples. Note that the MRCA of a 
tumor sample (or set of samples) is not necessarily the MRCA of 
the whole tumor, owing to the illusion of clonality. 

The Life History of 21 Breast Cancers, Nik-Zainal et al., 2012, Cell, doi: 10.1016/j.cell.2012.04.023

https://doi.org/10.1016%2Fj.cell.2012.04.023


Principles for creating a phylogenetic tree

Pigeonhole principle. In the context of subclonal reconstruction, the sum of CCFs of 
branching subclones should be less than or equal to the CCF of their parent clone. Indeed, if it 
was greater, this would mean that mutations have occurred independently in branching 
lineages. However, according to the infinite sites hypothesis, the same set of random 
mutations is unlikely to have happened twice independently. Therefore, the smaller subclone 
must be a descendant of the bigger subclone; that is, they are linear subclones, which is 
compatible with the infinite sites hypothesis. 

Cancer Evolution: Mathematical Models and Computational Inference, Beerenwinkel et al., 2015, Systems Biology, doi: 10.1093/sysbio/syu081

https://doi.org/10.1093%2Fsysbio%2Fsyu081


Crossing rule. When performing multisample or multiregion sequencing, when clone A and B are descendant of clone C and the CCF 
of clone A is higher than the CCF of clone B in one sample but the opposite is true in another sample, then clone A and B must be 
branching subclones. This rule stems from the more general rule that the shared subclones across samples must have arisen from the 
same phylogeny, which further constrains the possible phylogenetic relationships between subclones. 

a descendent clone must exhibit a smaller cellular prevalence than its ancestor within each and every tumor region

a          a
 

b          b

Principles for creating a phylogenetic tree



Standard workflow for subclonal reconstruction
● Sequence

○ …tumours at high depth, multiple regions if possible
○ …matched normal tissue

● Call somatic variants
● Reconstruct allele-specific copy number profiles

○ Consider using multiple copy number callers, to handle ambiguity
○ Check solutions (e.g. for correct CP and WGD status), refit if necessary

● Reconstruct subclonal SNV clustering
● Where possible, reconstruct phylogenies

○ Multi-region sampling helps
○ Phasing information and single-cell sequencing can provide further evidence

Recommended reading for further details: "A practical guide to cancer subclonal reconstruction from DNA sequencing", Tarabichi et al., nature 
methods, 2021

https://www.nature.com/articles/s41592-020-01013-2
https://www.nature.com/articles/s41592-020-01013-2


Timing somatic events in the evolution of cancer



Timing of somatic driver events
Events in a sample ordered based on:

● CCF (clonal before subclonal)
● Number of copies

○ Mutations, e.g.:
■ On 2 copies in a 2+2 region: before WGD
■ On 1 copy in a 2+2 region: after WGD

○ SCNAs, e.g.:
■ 2+0 region in WGD sample: loss 

occurred before WGD
■ 2+1 region in a WGD sample: loss 

occurred after WGD

Orderings aggregated across samples…
   Some options:

● PhylogicNDT league model
● Bradley-Terry model
● Plackett-Luce model 

The evolutionary history of 2,658 cancers, Gerstung et al., 2020, Nature, doi: 10.1038/s41586-019-1907-7

https://doi.org/10.1038/s41586-019-1907-7


Timing of copy number gains

We can use mutation VAFs to infer:

● Whether a SCNA (aka CNV) has occurred

● Relative order of the SCNA and 
mutation

● Whether the SCNA occurs in a different 
subclone (i.e. set of cells) than the 
mutation

● Strand of SCNA relative to mutation

PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors, Deshwar et al., Genome Biology, 2015, 
doi: 10.1186/s13059-015-0602-8

https://doi.org/10.1186/s13059-015-0602-8


Timing of mutational signatures
Sequencing at multiple time points can be 
highly informative

Koh Gene, et al., Nature Reviews Cancer, 2021

https://www.nature.com/articles/s41568-021-00377-7


Timing of mutational signatures

From single samples/time points, we can 
compare signatures by timing category:

● Early (pre-WGD) clonal

● Late (post-WGD) clonal

● Clonal (All clonal mutations;
 note that early/late cannot always be 

specified e.g. if no WGD)

● Subclonal

The evolutionary history of 2,658 cancers, Gerstung et al., 2020, Nature, doi: 10.1038/s41586-019-1907-7

https://doi.org/10.1038/s41586-019-1907-7


Timing of mutational signatures

We can track signature 
activity (approximately) by 
mutation CCFs

Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig, Rubanova et al., Nature 
Communications, 2020, doi: 10.1038/s41467-020-14352-7

https://doi.org/10.1038/s41467-020-14352-7


Chronological time estimates

● Previous “timings” are 
relative, not chronological

● Mutation rates change over 
time in cancers

● CpG>TpG are relatively 
stable, clock-like mutations

● However, they have also 
been shown to increase 
modestly in cancer cells vs 
normal

● We can count these 
mutations to estimate 
chronological timing

● We should account for a 
range of possible increases in 
CpG>TpG mutation rate

Median latency between the MRCA and the last detectable subclone before 
diagnosis for different CpG>TpG mutation rate changes in n = 1,921 
non-hypermutant samples with low tumour in normal contamination and at 
least 5 cases per cancer type.

The evolutionary history of 2,658 cancers, Gerstung et al., 2020, Nature, doi: 
10.1038/s41586-019-1907-7

https://doi.org/10.1038/s41586-019-1907-7


Reconstructing the life history of tumors

The evolutionary history of 
2,658 cancers

Gerstung et al., 2020, Nature, doi: 10.1038/s41586-019-1907-7

https://doi.org/10.1038/s41586-019-1907-7


Recommended reading for an in-depth study using many of these evolutionary timing methods:
"The evolutionary history of 2,658 cancers", Gerstung et al., 2020, Nature, 
https://www.nature.com/articles/s41586-019-1907-7

A review of cancer genomic evolution:
"Evolution of the cancer genome", Yates & Campbell, 2012, Nature Reviews Genetics, 
https://www.nature.com/articles/nrg3317

https://www.nature.com/articles/s41586-019-1907-7
https://www.nature.com/articles/s41586-019-1907-7
https://www.nature.com/articles/nrg3317
https://www.nature.com/articles/nrg3317


Evolutionary dynamics extrachromosomal 
DNA (ecDNA) in human cancers



ecDNA are large units of circular DNA that reside within 
the nuclei of cells yet are physically distinct from 
chromosomal DNA. 

They often range in size from 1-5 mega base pairs in 
length and can encode one or more full-length genes 
and regulatory regions. 

ecDNA have accessible chromatin and are highly 
transcribed, meaning they are fully functional and often 
more active than chromosomally located genes. 

ecDNA are one of the primary locations for high copy 
number focal oncogene amplifications in cancer cells; 
in fact, more than half of all high copy number 
amplifications in cancer occur on ecDNA.

Extrachromosomal DNA (ecDNA)

ecDNA observed by scanning electron microscope image



(Li et al. 2022)

Timeline of landmark 
ecDNA explorations

•More recurrent APOBEC3 kataegis was observed across 
circular ecDNA regions compared to other forms of 
structural variation

•Recurrent kyklonic events were increased within or 
near known cancer-associated genes including TP53, 
CDK4 and MDM2, etc. 

https://www.ijbs.com/v18p4006.htm


Oncogene amplification driven by ecDNA

ecDNA is a cancer specific phenomenon

Absent in normal healthy tissue, ecDNA are found 
in 14% of primary cancers and >40% of metastatic 
cancers.

Kim et al. 2020

ecDNA frequency across primary cancers

ecDNA

Yi et al. 2022

https://www.nature.com/articles/s41588-020-0678-2


The origin of ecDNA: Chromosome instability

(Verhaak et al. 2019)

● Chromothripsis

● Breakage-fusion-bridge (BFB) cycles

● Slight damage to DNA and relegation

● Replication fork stalling and template 

switching

(Li et al. 2022)

https://www.nature.com/articles/s41568-019-0128-6
https://www.ijbs.com/v18p4006.htm


Model of the rapid accumulation of ecDNA in cancer

(Noer et al. 2022)

Driving high copy number gene 
amplifications and non-Mendelian 
genomic adaptation, ecDNA enable 
tumors to rapidly evolve and switch 
their oncogene dependency when 
under therapeutic pressure, thereby 
rendering current targeted and 
immunotherapy approaches largely 
ineffective in patients with gene 
amplified cancers.

https://www.cell.com/trends/genetics/fulltext/S0168-9525%2822%2900034-8


The evolutionary dynamics of extrachromosomal 
DNA in human cancers

(Lange et al. 2022)

● Integrating theoretical models of random 
segregation, unbiased image analysis, 
CRISPR-based ecDNA tagging with live-cell 
imaging and CRISPR-C, we demonstrate that 
random ecDNA inheritance results in extensive 
intratumoral ecDNA copy number 
heterogeneity and rapid adaptation to 
metabolic stress and targeted treatment. 

● These results show how the nonchromosomal 
random inheritance pattern of ecDNA 
contributes to poor outcomes for patients with 
cancer.

https://www.nature.com/articles/s41588-022-01177-x


Next: Practical session 9 (10:45 am)

THANKS FOR YOUR ATTENTION!
Questions?

● Tumor evolution analysis using NGSpurity and Palimpsest



Date: Thursday, April 20, 2023

Time: 10:30 AM – 11:30 AM
 
Speaker: David Wedge, Ph.D., University 
of Manchester

Title: Tumour evolution in diverse 
human populations

Invited speaker


