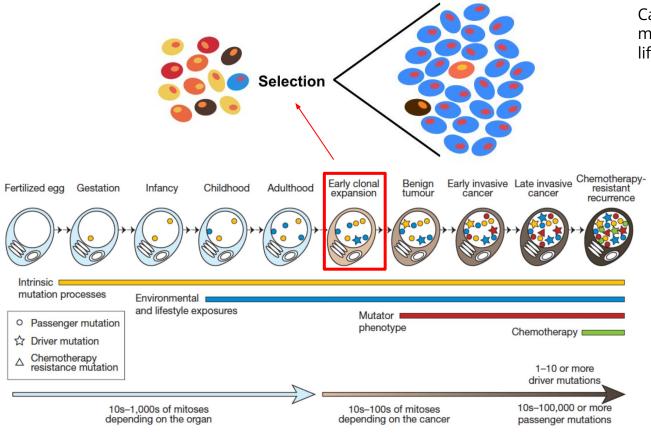
Session 8: Identifying Cancer Drivers

Emerging Approaches For Tumor Analyses in Epidemiological Studies

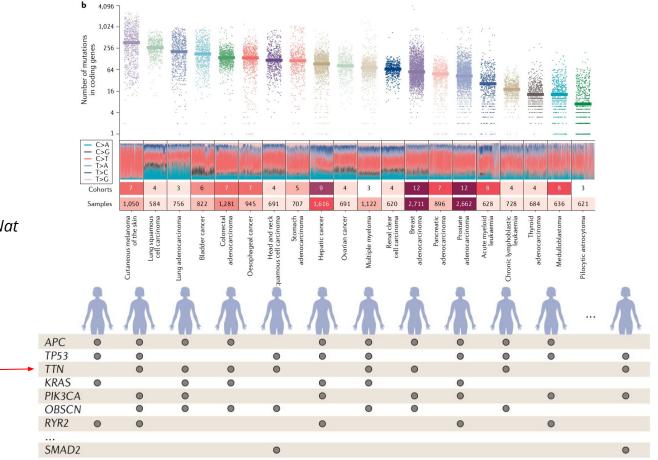
> March 13, 2023 9:30 AM- 12:00 PM


Outline

- Introduction: What are cancer drivers? Passenger versus driver mutations, Oncogenes versus tumor suppressor genes
- Bioinformatics methods for driver gene identification
- Identification of driver mutations in cancer genes
- Other genomic/epigenomic cancer drivers: Epigenomic (e.g. methylation), SVs, SCNA, etc.
- Non-coding drivers
- Experimental validation/Clinical applications

Introduction to cancer drivers

Driver Mutations and Cancer Driver Genes



Cancer progression results from mutations accumulated during lifetime

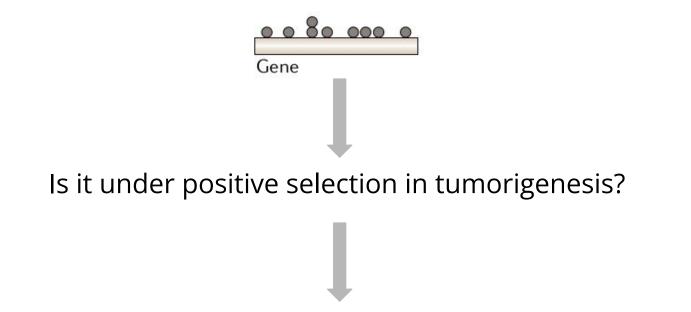
- Mutations can be acquired by intrinsic processes (e.g. cell division) or exogenous mutagens (e.g. UV light, tobacco smoke).
- Few driver mutations, many passenger mutations.
- Passenger mutations do not have effect on the cells. Driver mutations confer growth advantage, are positively selected on the microenvironment and cause clonal expansion.
- Driver mutations occur in a set of genes called "Cancer Driver Genes".

Stratton, Campbell & Futreal. Nature, 2009

Which somatic mutations are cancer drivers?

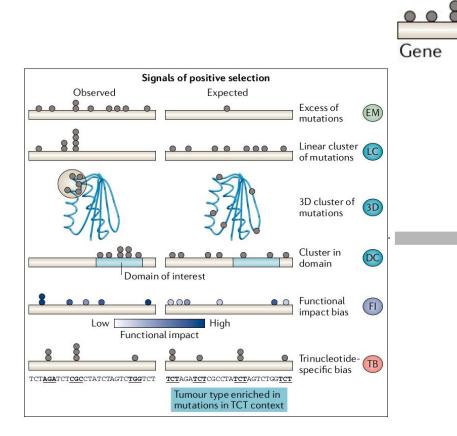
Martinez-Jimenez *et al. Nat Reviews Cancer,* 2020

Oncogenes and tumor suppressor genes

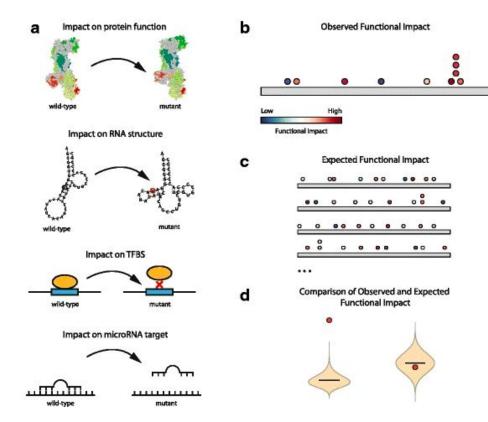

• Two types of driver genes: oncogenes (caused by mutations in proto-oncogenes in normal cells) and tumor suppressor genes (TSGs)

	Oncogenes	Tumor Suppressor Genes
Driver mutations	Activating or new functions	Inactivating
Mutated alleles in cancer	Dominant - mutation of 1 allele is sufficient	Recessive - require mutations of both alleles
Effects on cell growth	Promote cell growth	Inhibit cell growth
Germline transmission of mutant allele	Rare	Frequent
Common somatic mutations mechanisms	Point mutations, amplification, chromosomal translocation	Point mutations, chromosomal deletion, SV disruption
Well-known examples	MYC, RET, MET, KIT, FLT3, EGFR, BRAF	RB1, TP53, BRCA1/2, PTEN, CHEK2, CDKN2A, TGFRB2, APC

Bioinformatics methods for driver gene identification

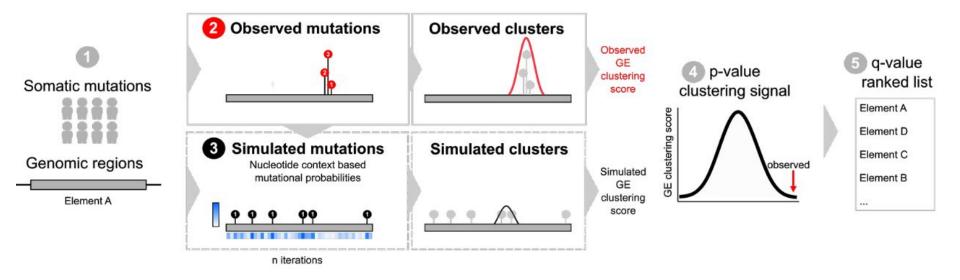

So, how to identify cancer driver genes?

Do observed mutational patterns deviate from the expectation under neutrality?


Bioinformatics approach to identify cancer drivers

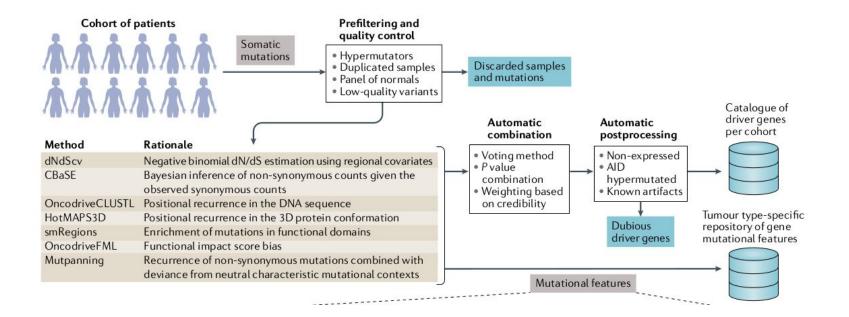
000 0

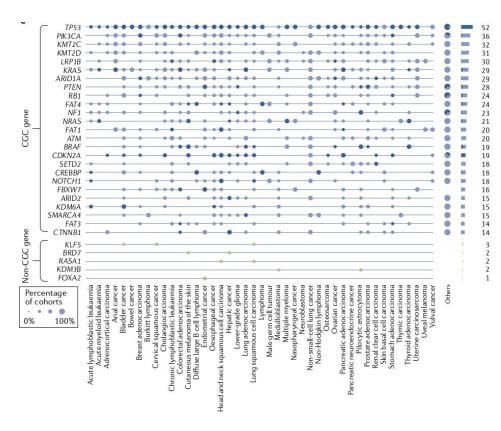
- dNdScv: Martincorena *et al., Cell,* 2017
- OncodriveCLUSTL: Arnedo-Pac *et al.*, *Bioinformatics*, 2019
- MotMaps: Tokheim *et al.*, *Cancer Res.*, 2016
- SMRegions: Martinez-Jimenez *et al.*, *Nat. Cancer.*, 2019
- OncodriveFML: Mularoni *et al., Genome Biol.,* 2019
- Mutpanning: Dietlin *et al., Nat. Gen.,* 2020

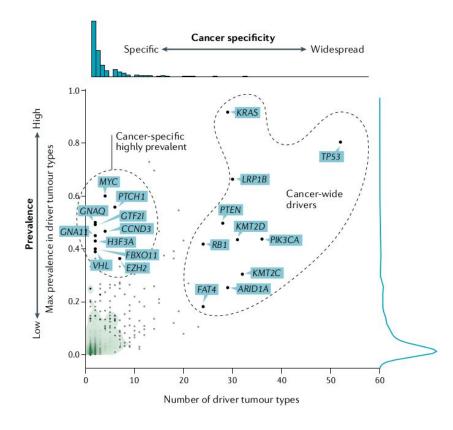

The key: estimating the expectation under neutrality

Taken from Mularoni et al., Genome Biology, 2016

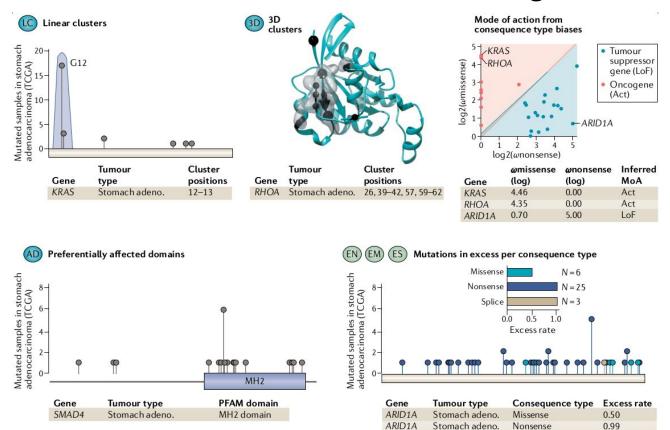
OncodriveFML


The key: estimating the expectation under neutrality


OncodriveCLUSTL


Taken from Martinez-Jimenez et al., Nat Rev Cancer, 2020

IntOGen (one platform to rule them all)


IntOGen

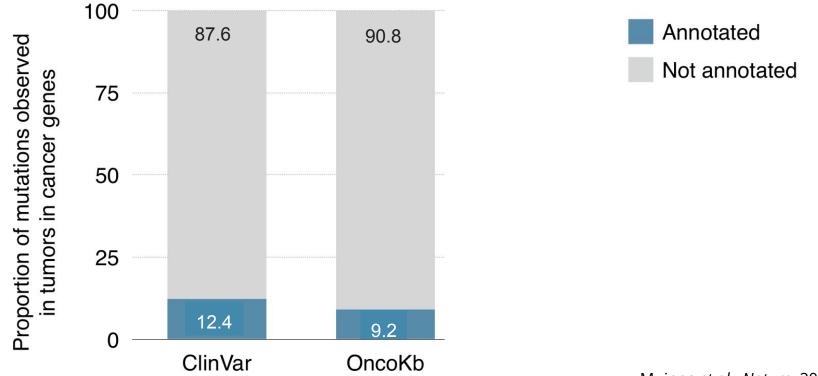
IntOGen

Mutational features of cancer driver genes

.

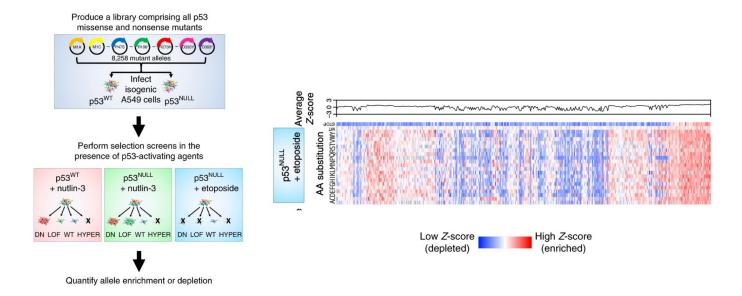
ARID1A

Stomach adeno.


Splice

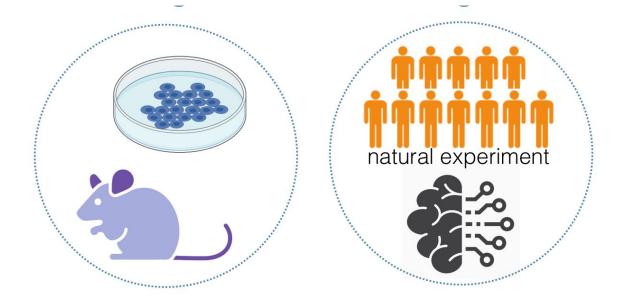
0.99

Identification of driver mutations in cancer genes

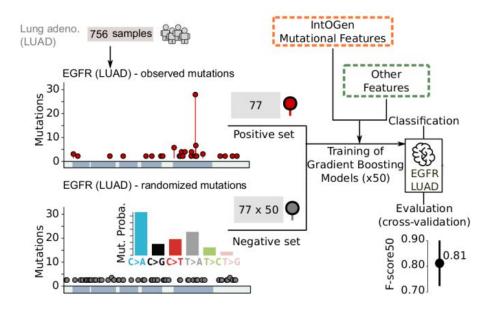


How many mutations in driver genes are annotated as tumorigenic?

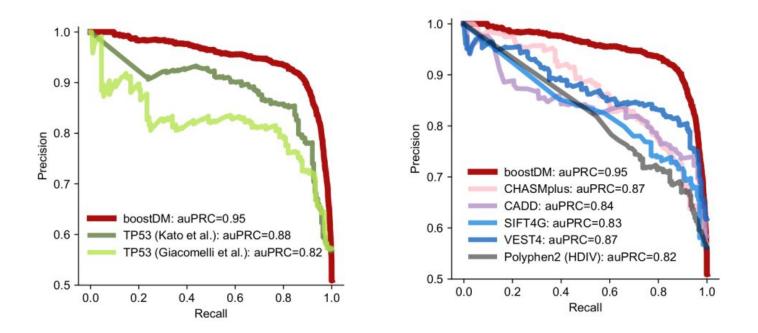
Muinos et al., Nature, 2021


How to distinguish driver from passenger mutations in cancer genes?

Giacomelli et al Nature Genetics 2018

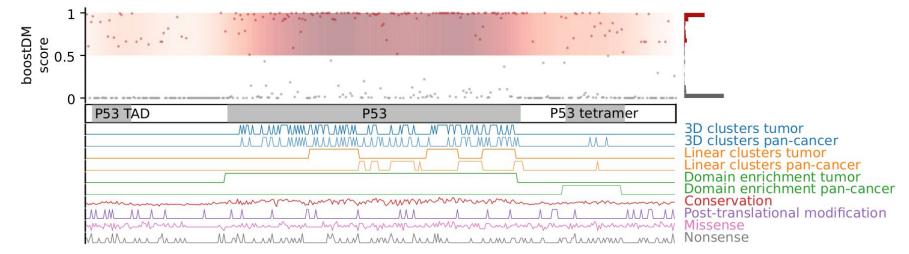

Experimental saturation mutagenesis

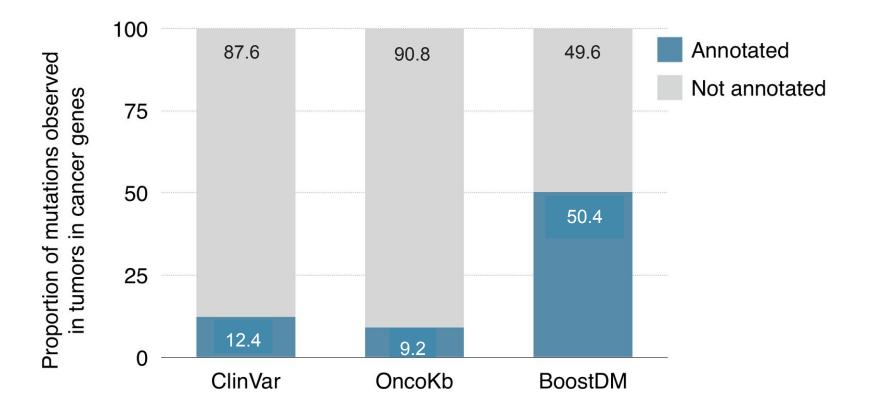
How to distinguish driver from passenger mutations in cancer genes?



In silico saturation mutagenesis

How to distinguish driver from passenger mutations in cancer genes?

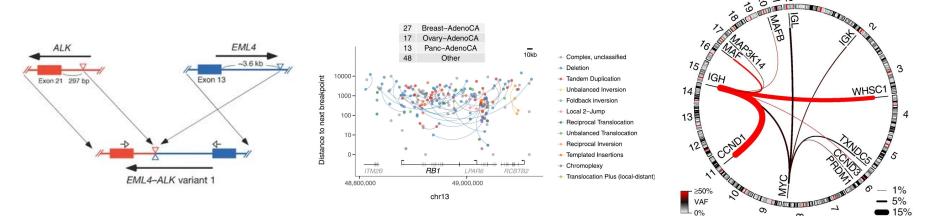

BoostDM gene-tumor type-specific models


Validation and benchmarking of boostDM TP53-colorectal model

Blueprint of TP53 driver mutations in colorectal tumors

TP53 Colorectal Cancer

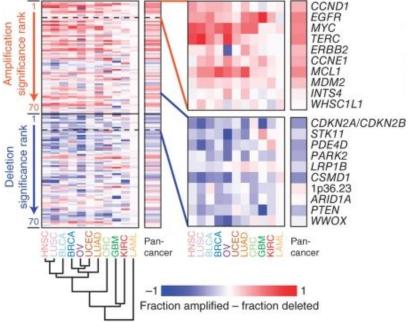
More blueprints at http://intogen.org/boostdm


Other genomic/epigenomic drivers

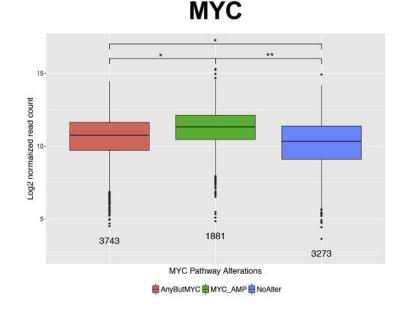
Somatic genomic rearrangement drivers

These could include

- Gene fusion involving oncogenes good to validate with expression data for expression of fusion transcripts
- Truncation of tumor suppressors (e.g. SV breakpoints affecting exons)
- Cis-activating rearrangements (e.g. promoter rearrangement and enhancer hijacking), accompanied with changes in expression

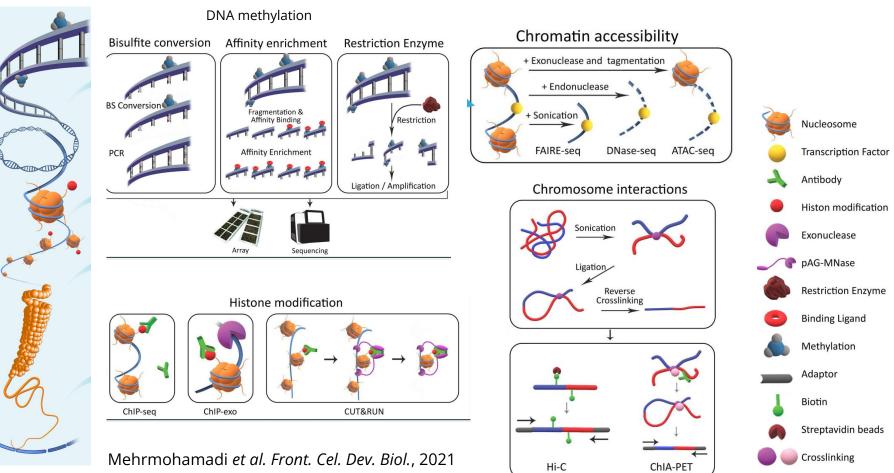


EML4-ALK fusion in lung cancer (Session 6 practical) Soda *et al. Nature,* 2007 SV breakpoints inactivating *RB1* in PCAWG cohort Li *et al. Nature,* 2020 *IGH* enhancers translocation is a common driver in ~50% multiple myeloma Barwick *et al. Nature Communications,* 2019

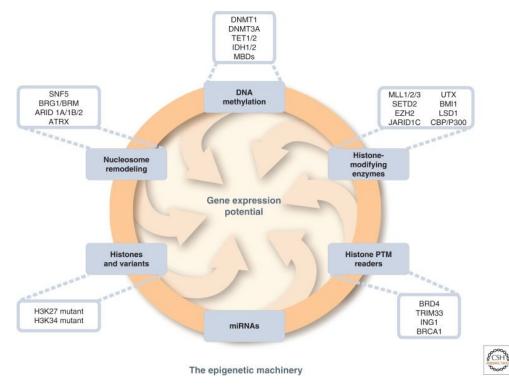

Somatic Copy Number Alterations Driver

Common approach to identify SCNA drivers

- Identify significantly recurrent SCNA across tumors (e.g. Using GISTIC session 7)
- With peaks overlapping established driver genes, compare expression of driver gene within the peak between tumors with and without SCNAs (if available).



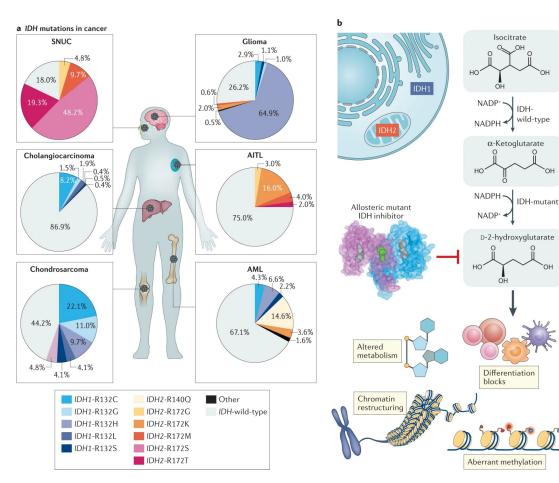
Significantly recurrent focal SCNAs from TCGA cohort Zack *et al. Nature Genetics*, 2013



MYC amplification and gene expression in TCGA cohort. Schaub *et al. Cell Systems,* 2018

Epigenome and common assays for detection

Epigenomic drivers

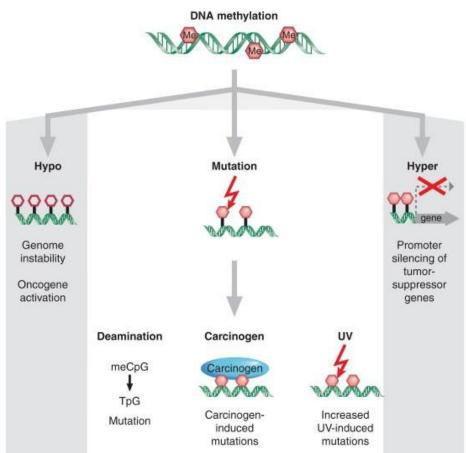


- Genetic mutations of the epigenetic modifiers could cause genome-wide epigenetic alterations in cancer.
- Potentially lead to large genome-wide changes in gene expression in cancer.

Genetic mutations of epigenetic modifiers

Baylin and Jones, Cold Spring Harb Perspect Biol., 2016

IDH mutations as epigenetic drivers in cancer

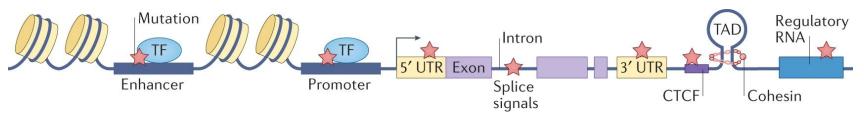


IDH1 and IDH2 are mutated at varying frequencies in several cancers:

- IDH1/2 mutants lead to overproduction of D-2-hydroxyglutarate
- This leads to altered metabolism, aberrant DNA and histone methylation, chromatin restructuring and blocks to normal differentiation patterns.

Pirozzi & Yan, Nat. Rev. Clin. Oncol., 2021

DNA methylation in cancer


Alteration in DNA methylation can contribute to tumorigenesis by various mechanisms:

- Local hypomethylation can lead to genomic instability and oncogene activation
- Local hypermethylation often at promoter regions can lead to silencing of TSGs
- Altered methylation can lead to increased possibility of carcinogen-induced and/or UV-induced mutations

Baylin and Jones, Cold Spring Harb Perspect Biol., 2016

Noncoding drivers

Noncoding drivers



Elliott & Larsson, Nat Rev Cancer 2021

Non-coding mutations can contribute to tumorigenesis via multiple mechanisms:

- Alter transcriptional regulation (e.g. mutations in enhancer, promoter)
- mRNA translation and stability (e.g. mutations in 5' UTR, 3' UTR)
- Alter regulatory elements that control splicing (e.g. mutations in intron)
- Disrupt chromatin domain structure, resulting in altered gene expression (mutations affecting CTCF or its binding sites)
- Alter function of regulatory non-coding RNAs

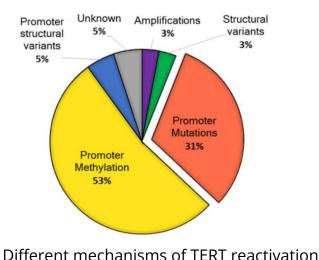
Challenges in identifying non-coding drivers

- Multiple key covariates across genomic regions need to be taken into account to reliably identify positive selection signals (mutations occur at higher frequency than expected by chance) e.g. differential repair, chromatin state, and replication timing compared to coding regions
- Various localized mutational phenomena poorly understood can confound non-coding driver detection
- More difficult to evaluate the functional impact of mutations

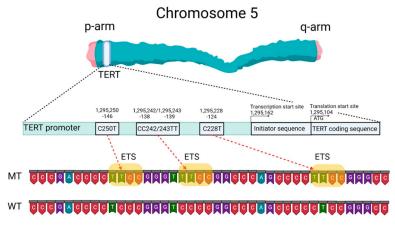
Elliott & Larsson, Nat Rev Cancer, 2021

Useful public databases for regulatory features

	Name	Element class	Technique			
	ENCODE	TFBS, histone modifications, genome-wide DNA:DNA interactions, and others	ChIP-seq, 5C, Hi-C, DNasel-seq, and many more			
Large scale studies	Roadmap Epigenomics	TFBS, histone modifications, DNA methylation, transcribed regions, and others	ChIP-seq, DNasel-seq, WGBS, RNA-seq, and many more			
	FANTOM	FANTOM5 & 6: promoters, enhancers, lncRNAs, and miRNAs	CAGE, deepCAGE, other CAGE methods, full-length cDNA technology			
		Element class	Databases included			
Metadatabases	Ensembl Regulation	TFBS, CTCF binding sites, TSS, miRNA target sites; annotation of open chromatin, promoters, enhancers, and others	ENCODE, FANTOM5, DianaTarBase, VISTA, and more			
	UCSC	TFBS, histone modifications, DHS, CpG islands, DNA:DNA interactions, sno/miRNA target sites, promoters, enhancers, and others	ENCODE, ORegAnno, GeneHancer, VISTA, and more			
		Element class	Abbreviation:			
	EnDB	Enhancer	CTCF : CCCTC-binding transcription factor			
	EnDisease	Enhancer	ChIP : chromatin immunoprecipitation DHS : DNasel-hypersensitive site			
Literature-derived	DiseaseEnhancer	Enhancer	IncRNA: long non-coding RNA			
databases	JASPAR	TFBS	miRNA: micro RNA snoRNA: small nucleolar RNA			
	GTDR	TFBS	TFBS : transcription factor binding site			
	ORegAnno	TFBS	TSS : transcription start site WGBS : whole genome bisulfite sequencing			
	RegulomeDB	TFBS, promoters	Garda et al., Med Gen., 2021			


Can help reduce computation burden and increase the chance of finding non-coding drivers with functional impacts

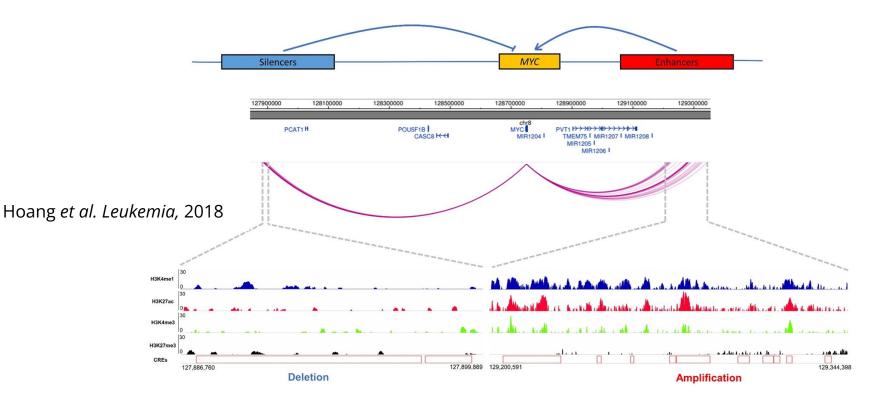
Common tools to detect noncoding drivers


Tool	Basic function	Characteristics accounted for						
name		Key covariates ^a	Local mutation rate ^b	Trinucleotide model ^c	Localized phenomena ^d	Functional impact ^e		
<u>ActiveDriv</u> erWGS ⁸¹	Quantifies enrichment of mutations in predefined genomic regions relative to a local expectation model	No	Yes	Yes	No	No		
<u>CNCDrive</u> <u>r⁷⁶</u>	Combines functional impact and recurrence with background mutation rate computed by sampling of similar regions	Yes	No	Yes	AID	Yes		
<u>Driver</u> Power ⁹⁴	Uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding regions	Yes	Yes	Yes	No	Yes		
ExinAtor ⁹⁵	Identifies genes with an excess load of SNVs, focusing on IncRNAs	No	No	Yes	No	No		
<u>fishHook⁵ 2</u>	Uses generalized linear modelling of mutation densities to detect enrichment or depletion of indels and SNVs	Yes	Yes	Yes	No	No		
LARVA ⁹⁶	Identifies elements with a significant mutation burden above a covariate corrected background in annotated regions	Yes	No	No	No	No		
MOAT ⁹⁷	Divides the genome into user-defined bins to determine local background mutation rate	No	Yes	Yes	No	No		
MutEnrich er ⁹⁸	Calculates both the overall mutation burden and hotspot enrichments for coding and non-coding regions	Yes	Yes	No	No	No		
MutSigCV	Detects mutation excess relative to a background model that considers patient-specific and gene-specific mutation rates	Yes	Yes	Yes	No	Yes		
MutSpot ⁸ 5	Performs feature selection across epigenetic and sequence features followed by estimation of position-specific and patient-specific background somatic mutation probabilities	Yes	Yes	Yes	Yes	No		
ncdDetect 2 ⁹⁹	Uses sample-specific mutational signatures, long-range mutation rate variation and position-specific impact	Yes	Yes	Yes	No	Yes		
ncDriver ⁵⁷	First identifies recurrently mutated elements and then evaluates based on combined significance of cancer-type specificity and conservation	Yes	No	Yes	No	Yes		
<u>Oncodrive</u> FML ¹⁰⁰	Assesses the functional impact of somatic mutations in coding and non-coding regions relative to simulated mutations	No	Yes	Yes	No	Yes		
regDriver ¹	Identifies excess mutations at TFBSs using a global mutation rate model	No	No	No	No	Yes		
SMuRF ¹⁰²	Uses a user-defined set of regions as input and identifies, filters and annotates significantly mutated regions	Yes	No	No	No	No		

Elliott & Larsson, Nat Rev Cancer, 2021

TERT promoter mutations in cancer

in cancer. Hafezi and Percoff, cells, 2020

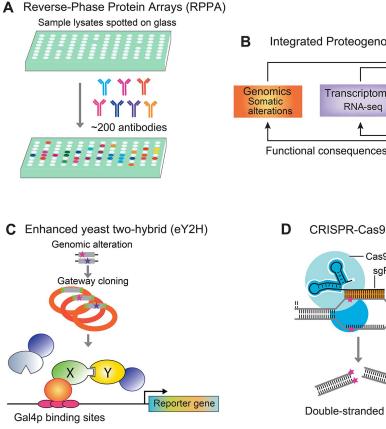


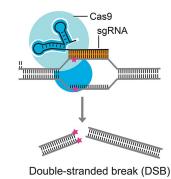
Hasanau et al. biomedicine, 2022

- *TERT* is silent in most somatic cells, and is reactivated in cancer cells, allowing them with unrestricted proliferation capacity
- Two canonical mutations in TERTp (C228T and C250T) observed in multiple cancer types create de novo ETS binding motifs -> transcriptional activation.
- Less frequent tandem mutations CC242/243TT have also been observed

An example of drivers in non-coding regions

- Mutations/SCNAs in the regulatory noncoding regions are also being actively investigated as drivers
- MYC is known to be overexpressed through MYC translocation and amplification in multiple myeloma
- SCNAs affecting the non-coding regulatory regions as an alternative mechanisms altering MYC expression


Experimental validation and clinical application

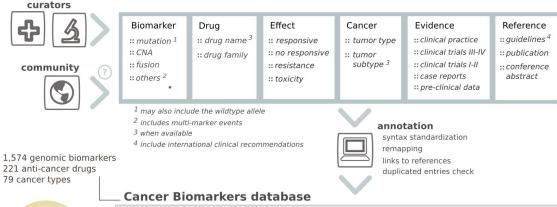

Functional validation of candidate driver genes

- Bioinformatics methods help identify potential driver genes candidates and prioritize for functional testing
- Gold standard: introduction of the mutation produces cellular phenotype that contributes a selective advantage to growth and survival
- Consideration:
 - Model organisms with different biology between species: e.g. most mouse cells have active telomerase but not most human cells -> mask the effects of drivers activating telomerase in mice vs human.
 - Cell types: Ideally testing on cell types of cancer origins, but some cancers do not have known cell of origins. Cancer cell lines might also have mutations in the same pathways that tested drivers are affecting.
 - Interdependence of mutations: some drivers acting co-occurring or mutually exclusive with others

Examples of experimental strategies

Integrated Proteogenomic Analysis Transcriptomics Proteomics LC-MS/MS RNA-sea Functional consequences of alterations

Α. RPPA technology is a common protein microarray that uses antibodies to measure the relative expression levels of proteins in tissues or cells. Ng et al. measured the impact of somatic alterations on gene expression.


https://doi.org/10.1016/j.ccell.2018.01.021

- Β. Integrated proteogenomic analysis can detect the protein abundance differences and modification caused by somatic alterations.
- C. eY2H can help elucidate how somatic mutations can alter protein—protein interactions (PPIs), protein—DNA interactions, and protein-metabolite interactions.
- D. CRISPR-Cas9 offers high efficacy to introduce mutations into the cellular/animal model to observe any tumorigenic differences between variant and wild type models.

Nussinov et al. PLOS Computational Biology, 2019

Example of clinical applications

	muta	tions	Biomarker	Drug	Effect	Evidence	Cancer	Reference
62%			Search here					
			ABL1 (T315A,F317L,F317V,F317I,F317C,V2	Nilotinib (BCR-ABL inhibitor 2nd gen)	Responsive	NCNN guidelines	CML	PMID: 21562040
1			ABL1 (I242T,M244V,K274R,L248V,G250E,G	Imatinib (BCR-ABL inhibitor 1st gen)	Resistant	European Leukem	CML	PMID: 21372080
			ALK (L1196M,S1206Y,G1269A,I1171T)	Ceritinib (ALK inhibitor)	Responsive	FDA guidelines	LUAD	PMID: 24670109
	21%		ALK (11171T)	Alectinib (ALK inhibitor)	Resistant	Case report	LUAD	PMID: 25226534
9% 8%		CNAs	AKT2 amplification	MK2206 (Allosteric AKT inhibitor)	Responsive	Pre-clinical	CANCER	ENA 2015 (abstr 373)
others			B2M oncogenic mutation	PD1 Ab inhibitors (immune checkpoint	Resistant	Case report	CM	PMID: 27433843
	ons		BRAF (V600E)	Vemurafenib (BRAF inhibitor)	No responsive	Early trials	COREAD	PMID: 26287849
			BRCA1 oncogenic mutation	Platinum agent (Chemotherapy)	Responsive	Late trials	OV	PMID: 22406760; 225
			DPYD splice donor variant	Tegafur (Fluoropyrimidine)	Toxicity	CPIC guidelines	CANCER	PMID: 239688873
	0	ase	EGFR exon 19 deletions	Erlotinib (EGFR inhibitor 1st gen)	Responsive	FDA guidelines	NSCLC	PMID: 289203045
pre-clinical	r	reports	ESR1-YAP1 fusion	ESR1 inhibitors	Resistant	Pre-clinical	BRCA	PMID: 24055055
			G6PD (V98M) + G6PD (N156D)	Dabrafenib (BRAF inhibitor)	Toxicity	FDA guidelines	CANCER	PMID: 26578950
41%	20%		IL7R (S185C) + SH2B3 deletion	MTOR inhibitors	Responsive	Pre-clinical	ALL	PMID: 22955920
			JAK2 (V617F)	Ruxolitinib (JAK inhibitor)	Responsive	FDA guidelines	MY	PMID: 28675839
			KIT mutations in exon 9,11,13,14 or 17	Regorafenib (Pan-kinase inhibitor)	Responsive	FDA guidelines	GIST	PMID: 25438920
	23%		KRAS oncogenic mutation	PI3K inhibitor + MEK inhibitor	No responsive	Early trials	PA	ASCO 2015 (abstr 4119)
12%	2070	early	MET amplification + BRAF (V600E)	Crizotinib + Vemurafenib (ALK inhibitor +	Responsive	Case report	COREAD	PMID: 27325282
12 /0 49	26	trials	PIK3CA oncogenic mutation + ERBB2 amplif	Everolimus + Trastuzumab + Chemother	Responsive	Late trials	BRCA	PMID: 27091708
guidelines .			PML-RARA fusion	Volasertib (PLK1 inhibitor)	Responsive	Early trials	AML	NCT02198482 NCT0166
a	te trials							

Tamborero et al., Genome Medicine, 2019

Interpreting tumor genomes

ALTERATIONS	RESCRIPTIONS						
Mutations	CNAs						
how entries with:	Mutations identifi	ed as drivers 🗹 Mutatio	ns with oncogenic annotation	ns Other mutations			
ample ID	Gene	Protein Change	Oncogenicity (Mutation	Consequence	Oncogenic annotation	Transcript
earch here							
CGA-AG-3999	KRAS	G12S	driver	chr12:25398285 C>T	missense variant	@ 😔	ENST0000256078
CGA-AG-3999	<u>TP53</u>	R213*	driver	chr17:7578212 G>A	stop gained	∞	ENST0000269305
CGA-AA-A00D	<u>TP53</u>	R196*	driver	chr17:7578263 G>A	stop gained	1	ENST0000269305
CGA-AA-A00D	PIK3CA	H1047L	driver	chr3:178952085 A>T	missense variant	<u>@</u>	ENST0000263967
CGA-AA-A00D	APC	R1450*	driver	chr5:112175639 C>T	stop gained	800 E	ENST0000257430
CGA-AA-A00D	BRAF	V600E	driver	chr7:140453136 A>T	missense variant	0	ENST00000496384
CGA-AG-3999	APC	E190*	driver	chr5:112116523 G>T	stop gained		ENST00000257430
CGA-AA-A00D	APC	R564*	driver	chr5:112164616 C>T	stop gained		ENST00000257430
CGA-AG-3999	BCL9L	Q1041*	driver	chr11:118771331 G>A	stop gained		ENST00000334801
CGA-AG-3999	PTPRU	R1297Q	driver	chr1:29649914 G>A	missense variant		ENST00000345512
CGA-AG-3999	PTPRT	R1340H	driver	chr20:40714387 C>T	missense variant		ENST00000373193
CGA-AG-3999	UBR5	G1638R	driver	chr8:103299706 C>T	missense variant		ENST00000520539
CGA-AG-3999	PNLIP	R54C	passenger	chr10:118306919 C>T	missense variant		ENST00000369221
CGA-AA-A00D	C10orf90	R651*	passenger	chr10:128118366 G>A	stop gained		ENST00000284694
CGA-AG-3999	DDX21	G295V	passenger	chr10:70725230 G>T	missense variant		ENST00000354185

Tamborero et al., Genome Medicine, 2019

Interpreting tumor genomes

ALTERATIONS	ESCRIPTIONS								_	
Show entries with:			utations in genes described as biomarkers with a di terations in genes described as biomarkers upon ot							
Sample ID	Alterations	Biomarker	Drugs	Diseases	Response	O Evidence .	Match	O Source	BioM	⑦ Resist. (
Search here										
TCGA-AG-3999	M KRAS (G12S)	✓ KRAS (12,13)	Cetuximab (EGFR mAb inhibitor)	Colorectal adenocarcinoma	Resistant	≜ A	\odot	6000	С	
TCGA-AG-3999	M KRAS (G12S)	A KRAS (12,13,59,61,117,146)	Panitumumab (EGFR mAb inhibitor)	Colorectal adenocarcinoma	Resistant	Â₽	Ø	600	С	
TCGA-AG-3999	M KRAS (G12S)	KRAS oncogenic mutation	Panitumumab (EGFR mAb inhibitor)	Colorectal adenocarcinoma	Resistant	≜ A	\odot	000	С	
TCGA-AG-3999	M KRAS (G12S)	KRAS oncogenic mutation	Cetuximab (EGFR mAb inhibitor)	Colorectal adenocarcinoma	Resistant	ÂA	\odot	2007	C	
TCGA-AG-3999	M KRAS (G12S)	KRAS oncogenic mutation	EGFR inhibitors	Lung	Resistant	≜ A	\odot	500	С	
TCGA-AG-3999	M KRAS (G12S)	A KRAS (D119N,G12F,F156L,G60R,F28	Panitumumab + Cetuximab	Colorectal adenocarcinoma	Resistant	≜ A	Õ	00	С	
TCGA-AA-A00D	M PIK3CA (H1047L)	A PIK3CA oncogenic mutation	Alpelisib (PI3K inhibitor) + Fulvestrant (Estrogen re	Breast adenocarcinoma	Responsive	≜ A	Ø	(С	
TCGA-AA-A00D	M BRAF (V600E)	A BRAF (V600E)	Trametinib (MEK inhibitor) + Dabrafenib (BRAF inh	Non-small cell lung	Responsive	Â₿	Ø	5000	C	
TCGA-AA-A00D	M BRAF (V600E)	A BRAF (V600E)	Encorafenib (BRAF inhibitor) + Cetuximab (EGFR	r Colorectal adenocarcinoma	Responsive	Â₿	\odot	5007	C	
TCGA-AA-A00D	M PIK3CA (H1047L)	A PIK3CA (C420R,E542K,E545A,E545D	Alpelisib (PI3K inhibitor) + Fulvestrant (Estrogen re	Breast adenocarcinoma	Responsive	≜ A	Ø	000	С	
TCGA-AA-A00D	M BRAF (V600E)	A BRAF (V600E)	Dabrafenib + Trametinib (BRAF inhibitor + MEK in	h Lung adenocarcinoma	Responsive	≜ A	Ø	60m	С	
TCGA-AA-A00D	M BRAF (V600E)	A BRAF (V600E,V600K)	Dabrafenib + Trametinib (BRAF inhibitor + MEK in	h Cutaneous melanoma	Responsive	≜ A	Ø	2007	C	
TCGA-AA-A00D	M BRAF (V600E)	A BRAF (V600E,V600K)	Vemurafenib + Cobimetinib (BRAF inhibitor + MEK	Cutaneous melanoma	Responsive	A	Ø	5000	С	
TCGA-AG-3999	M KRAS (G12S)	KRAS oncogenic mutation	Trastuzumab + Lapatinib (ERBB2 mAb inhibitor +	E Colorectal adenocarcinoma	Resistant	¢₿	Ø	800m	C	
TCGA-AG-3999	M KRAS (G12S)	A KRAS (A146T,G13D,G12C,.,A146P,Q6	Cetuximab	Colorectal adenocarcinoma	Resistant	¢₿	\odot	•	C	
TCGA-AG-3999	M KRAS (G12S)	✓ KRAS (G12C,G12.,G12A,G12V,G12D,	Gefitinib	Lung	Resistant	≈ B	\bigcirc	Ŏ	С	
TCGA-AG-3999	M KRAS (G12S)	A KRAS (G12D,G12C,G12A,G12S)	Melphalan	Multiple myeloma	Resistant	≈ B	Ø	Ö	С	
TCGA-AG-3999	M KRAS (G12S)	A KRAS oncogenic mutation	Trametinib	Non-small cell lung	Responsive	¢₿	Ø	Ö	С	
TCGA-AG-3999	M KRAS (G12S)	KRAS oncogenic mutation	Temsirolimus + Ridaforolimus	Endometrial adenocarcinoma	Responsive	¢₿	\odot	Ö	C	
TCGA-AG-3999	M TP53 (R213*)	TP53 oncogenic mutation	Alemtuzumab	Chronic lymphocytic leukemia	Responsive	≈ B	\odot	Ŏ	С	
TCGA-AG-3999	M KRAS (G12S)	✓ KRAS oncogenic mutation	Lysergide	Lung adenocarcinoma	Responsive	¢₿	Ø	Ö	C	
TCGA-AG-3999	M TP53 (R213*)	A TP53 (R175H,,R249.)	Doxorubicin	Breast adenocarcinoma	Responsive	¢₿	Õ	Ø	С	
TCGA-AG-3999	M TP53 (R213*)	✓ TP53 oncogenic mutation	Chemotherapy	Stomach	Responsive	≈ B	Ø	Ö	C	
TCGA-AG-3999	M KRAS (G12S)	✓ KRAS oncogenic mutation	Abemaciclib	Non-small cell lung	Responsive	¢₿	Ø	Ö	C	
TCGA-AG-3999	M KRAS (G12S)	KRAS oncogenic mutation	Bevacizumab	Colorectal adenocarcinoma	Resistant	≈ ^B	Ø	Ö	C	
TCGA-AG-3999	M KRAS (G12S)	✓ KRAS oncogenic mutation	Refametinib + Sorafenib	Hepatic carcinoma	Responsive	≈ B	Ø	Ö	C	
TCGA-AG-3999	M KRAS (G12S)	A KRAS oncogenic mutation	Docetaxel + Selumetinib	Non-small cell lung	Resistant	⊗ B	Ŏ	Ň	С	

Invited speaker

Date: Thursday, March 23, 2023

<u>Time</u>: 10:30 AM – 11:30 AM

<u>Speaker</u>: Núria López-Bigas, Ph.D., Institute for Research in Biomedicine (IRB) Barcelona

<u>Title</u>: Somatic mutations in tumors and normal tissues

THANKS FOR YOUR ATTENTION! Questions?

Next: Practical session 8 (10:45am)

- Running different algorithms to identify cancer driver genes (dndscv, OncodriveFML, OncodriveCLUSTL)
- Demo of using Cancer Genome Interpreter to identify driver mutations and link to clinical applications