RNA-seq Data Mining

Emerging Approaches For Tumor Analyses
in Epidemiological Studies

DIE) NATIONAL CANCER INSTITUTE May 3, 2023
9:30am - 12:00pm




Session overview

= Normalization and differential expression
= |soform discovery and alternative splicing
= Pathway analysis

= Clustering and classification

= Fusion gene detection

= Allele-specific expression

= RNA editing
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Differential Expression Analysis

Study Question:

Are there genes that are differentially up/down regulated with respect to our
variable of interest (exposure, status, etc.)




Differential Expression Analysis: Overview

[ Step 1: Quantification }

Read-count based methods
Gene/transcript quantification

{ Step 2: Normalization }

S oW

RPKM (obsolete)
DESeq2

edgeR

UQCT

{ Step 3: Statistical Test for DE }

B

DESeq2
edgeR
Simple Regression (for large studies)




Step 1: Quantification

To determine if expression is different, first we must
quantify expression levels:

The two main ways to quantify expression levels are:

1. Read Counts Based Methods

o Directly count # reads covering a feature (gene, transcript, etc)
o Must be normalized as a separate step

2. Gene/Transcript Quantification Based Methods

o Use more complicated methods to estimate the quantity/proportions of different genes or
transcripts

o Most tools include normalization as part of the quantification step



Step 2: Normalization

Read counts must be normalized so that they are comparable to one another

e Oiriginally, gene-level read counts would be normalized to transcript length
(in kb), and to total # reads for the sample (in millions)
o “RPKM” — Reads per Kilobase per Million
o “RPM” — Reads per Million
o “FPKM” — “Fragments” (aka read-pairs) per Kb per Million

NOTE: Do not do this!
Better normalization methods have been developed. Do NOT just divide by total count.

e Because RPKM became the standard, many tools use proper
normalization methods but then adjust the numbers into “RPKM” or “RPM”-
“like” units.

o Sometimes estimate transcript abundances as “TPM” (transcripts per million)




Step 2: Normalization

Read counts must be NORMALIZED so that they are comparable to one
another!

There are several tools that will perform this normalization
properly:

e edgeR (“TMM” normalization)

e DESeqg2 (“RLE” normalization)

The difference is usually minimal.

(Note: these tools also perform differential expression analysis,
but you can also just use the normalization part.)



Gene/Transcript Quantification Based Methods

Use more complicated methods to estimate the quantity/proportions of
different genes or transcripts

Popular options:
e CuffLinks
e Kallisto

These tools generally output normalized expression levels for each gene
and/or transcript.



Step 3: Statistical Tests for Differentials

Study Question:

Are there genes that are differentially up/down regulated with respect
to our variable of interest (exposure, status, etc.)

How do we test for this?
Depends on your study:

A. Traditional RNA-Seq study designs:
» Very small (~3 replicates case/control)

B. Large scale RNA-Seq studies:
* Much larger (10+ replicates per group)



Step 3: Statistical Tests for Differentials

A. Traditional RNA-Seq study designs:

* Very small (~3 replicates case/control)

Require specialized methods:

o estimate dispersion with only 3 samples per group (share information between genes)
o Unusual probability distribution (negative binomial).

For count-based methods:
o edgeR and DESeq2 are the most common options

For transcript-quantification-based methods:
o CuffDiff (for use with Cufflinks)
o Sleuth (for use with Kallisto)



Step 3: Statistical Tests for Differentials

B. Large scale RNA-Seq studies:
« Much larger (10+ replicates per group)

Specialized methods not necessary, can just use linear regression on:
* log-scaled normalized counts (count-based methods)
« TPM estimates (transcript quantification methods)

[ Central Limit theorem: negative binomial distribution is irrelevant with large sample }
size




Step 3: Statistical Tests for Differentials

[ Also note: in large sample sizes, specialized methods appear to overfit / inflate p- ]
values

e |In a recent project, | took a dataset and generated 9
completely random case/control variables

e Ran DESeqg2 and simple linear regression (on log-
normalized counts)

e DESeq2 showed statistically significant results



Step 3: Statistical Tests for Differentials

Also note: in large sample sizes, specialized methods appear to overfit / inflate p-
values

QQ-plots, Randomly assigned Case-Control Status

DESeq2

DESeq2 Method

Simple Regression

QQ-plots, Randomly assigned Case-Control Status

Standard Regression Method
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Step 3: Statistical Tests for Differentials

Remember to control for confounding variables (if
applicable).

Most methods give the ability to add confounders,
effect modifiers, batch, etc. Usually in a standard
regression form such as:

Y ~ batch + age + sex + caseCtrilStatus



Step 4: Interpretation

Regardless of the method, the result traditionally includes:

e Results table
o List of genes (or transcripts) with fold change and p-values

e “MA’ plot.

x-axis: mean normalized counts (# read pairs per gene)
y-axis: fold change
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Differential Expression Analysis
Main takeaways

DE analysis looks for differences in expression based on some study
condition/exposure

Three steps:

o Quantification

o Normalization

o Statistics

Two primary quantification methods:

o Count-Based

o Transcript-Based

Statistical Methods depend on study size

o Small studies: Use standard DE/RNA-Seq tools
o Large studies: Use simple regressions on log-transformed/normalized data
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Differential Splicing
Differential Isoform usage
Differential Exon Usage
Alternative Isoform Regulation
etc...

Analysis

Study Question:
Is there any kind of differential expression regulation occurring among a
gene’s transcript set, distinct from gene-level differential expression?




2 basic types of differential expression regulation:

1) Differential Gene Expression (DGE/DEG/DE)

o Entire gene is up/down regulated, depending on \/
some experimental condition

o Fairly straightforward: Use edgeR, DESeq2, or
limma.

\
2) Alternative Isoform Regulation (AIR)

o One or more specific transcripts/splice- ?
variants/exons/etc are being independently up/down
regulated based on some experimental condition

S
\ o Much trickier! j




Alternative Isoform Regulation
can take many different forms:
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... and can be caused by many different mechanisms

Splicing Activation! Nucleosome occupancy? Long Non Coding RNA'’s3
a pre-mRNA pre-mRNA w ® sox
—

-

Nucleosome

Nature Reviews | Genetics L

1Wang, Zefeng, and Christopher B. Burge. Rna 14.5 (2008): 802-813.
2Keren, H., Lev-Maor, G., & Ast, G. (2010). Nature Reviews Genetics, 11(5), 345-
355.



The result:
Staggering complexity
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Analysis of Isoform-Level Differences
is REALLY HARD

Making it worse:
® Transcripts are >2kb
® Reads are <150bp
® Read coverage is not uniform
® Annotation is incomplete

— Usually VERY incomplete

® Interpretation is often very difficult



The Interpretation Problem:

® Even if you detect AIR/DS/etc, interpretation is ALSO HARD.
O Results often complex & counterintuitive
O Dozens of isoforms, each (may be) regulated differently
O Annotation might be wrong/incomplete

® Bottom line: it's not like DE analysis
O You can't just report fold-change & p-value and call it a day.



There are many tools
for detecting differential splicing:

® Count-based:

— Detects differential splicing/etc by proxy, uses counts of individual components
(exons, splice sites, etc)

— Examples: SUPPA2, rMATS, DEXSeq, edgeR, JunctionSeq (my tool)

® Isoform-based:
— Detect AIR directly by estimating isoform abundances.
— Most tools do not test directly for splicing changes
— They allow you to test each isoform independently

— May indirectly discover differential splicing if you observe some isoforms
changing and not others

— Examples: CuffDiff2, Kallisto, RSEM.

(Note: there are MANY more tools, but these at least have seen some real-life usage)



Problems with existing tools:

Problems with existing tools:
® Isoform-level tools just don’t work very well

— Fundamentally hard/impossible to quantify overlapping 2kb isoforms using
<150bp fragments

® Many tools have poor performance when annotation incomplete

— Many count-based methods perform very poorly when affected transcripts
are not annotated (for obvious reasons)

— Annotation is always incomplete



Problem: Illumina data does not give us full-length Isoforms
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Differential Splicing/Differential Isoform usage/Differential Exon Usage/Alternative Isoform Regulation/etc... Analysis

INTERPRETATION and VALIDATION

@® Results should not be trusted without substantial validation
O With the right primers, gPCR can validate splicing differentials
O Long-read technologies can validate the existence of splicing variants.
m Confirm that they are coding, in-frame, full-length, etc.

@® |nterpretation should be in-depth:

O Generate “wiggle” plots for UCSC browser (or IGV, etc). Examine expression levels across the
gene

O Examine gene closely: check for novel exons, novel splice junctions, genes on the opposite
strand (if RNA-Seq is unstranded), overlapping genes.

B These may cause false positives and/or misleading results



Applied example: the TTC8 Gene in rat pineal glands

E002, E003

Mean Normalized Coverage (ENSRNOG00000004542)
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Applied example: the TTC8 Gene in rat pineal glands

Mean Normalized Coverage (ENSRNOG00000004542)
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Problem: Illumina data does not give us full-length Isoforms
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PacBio SMRT Sequencing Validation
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PacBio SMRT Sequencing Validation
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Differential Splicing/Differential Isoform usage/Differential Exon Usage/Alternative Isoform Regulation/etc... Analysis

Main Takeaways

® Numerous tools exist.
O Two basic types: count-based or transcript-based

® Not for the faint of heart
@ |nterpretation and examination of results should be extensive and in-depth
® Don't take results at face value: validation is important

@ Hot take: don’t bother unless you’re willing to spend a lot of time/resources interpreting and
validating the results
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Gene Set Enrichment Analysis

[ Step 1: Quantification }

.

Read-count based methods
Gene/transcript quantification

[ Step 2: Normalization }

s

oW

RPKM (obsolete)
DESeq2

edgeR

UQCT

[ Step 3: Statistical Test for DE }

Step 4: Gene Set Enrichment
Analysis

1

o wp

DESeq?2
edgeR
Simple Regression (for large studies)

. GSEA
. GSVA

. ClusterProfiler
. reactomePA




Gene Set Enrichment Analysis

There are many different methods/tools for performing this sort of
analysis, differ in details, but basic idea:

e Look at sets of genes
e Are the significant/substantial differentials concentrated in these sets

Study Question:

Are there pathways, gene-ontology keywords, or other gene

sets that are disproportionately represented in the results
of an RNA-Seq analysis?




Gene Set Enrichment Methods

What can it do?

® Give you more information about the biological processes involved
@ Assist in interpretation of RNA-Seq expression results

® Provide more information



Gene Set Enrichment Methods

What is it NOT?
® Not always necessary in all differential expression analysis

@ Not an easy way to get a p-value if you don’t come up with anything directly
O It can be used for this in certain limited circumstances, but only carefully



What Gene Lists?

There are numerous different options for finding useful gene lists for use with GSEA.

® Molecular Signatures Database (MSigDB)
® Gene Ontology (GO)

® REACTOME pathway database



MSigDB
LOTS of gene sets, separated into several main groups:

H: Hallmark gene sets (50 sets)
o Highly-curated sets that represent merge of multiple gene sets
C1: Positional gene sets (300 sets)
o Gene sets corresponding to human chromosome cytogenetic bands
C2: Curated gene sets (6495 sets)
o Curated from various sources, including online databases and the literature.
o Many also contributed by individual experts.

C3: Regulatory target gene sets (3713 sets)

o Gene sets representing potential targets of regulation by transcription factors or microRNAs.

C4: Computational Gene Sets (858 sets)

o Gene sets generated in silico via data mining



MSigDB

Generally NOT recommended to test against entire MSigDB database.

Better to test against gene sets that are related to your study topic / known biological
processes.



logged in as stephen.hartley@nih.gov
logout

Gene Set Enrichment Analysis

GSEA Home Downloads Molecular Signatures Database

MSigDB Home

Search Human Gene Sets UC San Diego gBROAD

» About INSTITUTE

» Browse

To search by full or partial gene set name, or to browse an alphabetical list, see the Browse Gene Sets page.
» Investigate

» Gene Families Search by keyword, collection, source species, or contributor: .
Keywords: Search Filters:
» About
» Browse [metanoma | collection source species  contributor
» Search \’suopo(rs boolean operators AND and OR, all collections. . | [3l sources . | [l contributors =
and wildcard searches with *) H: hallmark gene sats Danio rerio Aristoteles University of Thessaloniki
» Investigate C1: positional gene sets Homo sapiens Belgian Nuclear Reszarch Centre
C2: curated gene sats Macaca mulatta BioCarnta
Help —CGP: chemical and genetic pertubations Mus musculus Broad Institute
-CP: canonical pathways Rattus norvegicus CarMeN Laboratory
C2: regulatory gene sets Cleveland Clinic Foundation
-MIR: microRNA targets Columbia University
~TFT: al transcription factor targets Dana-Farber Cancer Institute
C4: computational gene sets B ¥ | |Gene Ontology Consortium N

control-click to select multiple lines

found 37 gene sets

click on rows to select gene sets, click a gene set name to view the gene set page

[ select all 37 0 gene sets selected  [Select An Action... v]

<< <[1/234> 2> [0 v]

N source -
collections N contributor
organism

ALONSO_METASTASIS_DN 26 Down-regulated genes in melanoma tumors that developed metastatic disease compared to primary melanoma that did not. c2 Homo sapiens MSigDB Team

name # genes description

ALONSO_METASTASIS_EMT_DN 5 EMT (epithelial-mesenchymal transition) genes down-regulated genes in melanoma tumous that developed metastatic disease compared to c2 Homo sapiens MSigDB Team

v




Gene Ontology

The Gene Ontology Resource (GO) is a large database of genes organized into hierarchical keywords.

Examples:

e “biological process”

e “mitochondrion”

e “glucose transmembrane transport”
e “amino acid binding”

Each gene will belong to many GO terms.

Each term will often belong to many higher-level terms (ex: “metabolic process” belongs to “biological
process”)



Gene Set Enrichment Methods

There are numerous different methods/tools for performing this sort of analysis:
® ClusterProfiler

O Can use GO terms or other annotated lists

® recactomePA
O Uses “REACTOME” database
O Same developer as ClusterProfiler

® “GSEA”:
O Developed by same group that created MSigDB

® GSVA: “Gene Set Variation Analysis”
O Optionally allows for mixture of up/down regulation



Gene Set Enrichment Analysis
Main takeaways

Takes the results of Differential Expression analysis as input

Can help with interpretation, can give more information about biological functions
involved, etc.

Several options for gene set database

Several options for software analysis tools
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Clustering and classification — Common approaches

= Unsupervised machine learning: models
to group samples with similar features
together

= Dimensionality reduction
= Clustering

= Supervised machine learning: models to
predict class of new sample

= Feature selection

= Classification

Clustering

Classification

b 4
Xx x XX
e mxX

m) NATIONAL CANCER INSTITUTE https://www.analyticsvidhya.com/blog/2021/11/quick-tutorial-clustering-data-science 49



Clustering and classification — Unsupervised machine learning

= Dimensionality reduction:
= Principal component analysis (PCA)
= t-distributed stochastic neighbor embedding (t-SNE)
= Uniform Manifold Approximation (UMAP)
= Clustering
= Hierarchical clustering
= K-Means
= Model-based clustering
= Deep learning

m) NATIONAL CANCER INSTITUTE
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Clustering and classification — Unsupervised machine learning

Dimensionality reduction is the process of reducing the number of
features when exploring the structure of high-dimensional data.

|dentifies the most relevant information

Reduces computational time

Does lose some information

Used for data classification and visualization

m) NATIONAL CANCER INSTITUTE
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Clustering and classification — Unsupervised machine learning

= PCA

m) NATIONAL CANCER INSTITUTE

Find component axes that maximize the
variance of the data

A linear method
Fast and easy to apply
Interpretable results

Can be used to filter the top significant
PCs A

Limited performance when the data is -
not linearly separable .
Not optimized for 2D visualization e

X
A X
%"
X X

X X
X

X

X

Linear vs. nonlinear problems

.
>

X2

B

https://sebastianraschka.com/Articles/2014_python_lda.html

https://sebastianraschka.com/Articles/2014_kernel_pca.html
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NH)

Clustering and classification — Unsupervised machine learning

When there are too many samples and the goal is to is to identify cell types (e.g. scCRNA-
seq), usually we use tSNE and UMAP.

2D t-SNE projection

= tSNE and UMAP are both graph-based non-linear methods. And
are optimized for 2D visualization

= tSNE is a stochastic algorithm

= tSNE preserve local structure, but not global. (i.e. the distant
proximity is NOT informative).

= UMAP preserves better the global structure, and can control the
balance between local and global structure with parameters.

= UMAP is much faster than tSNE.
= Both requires optimization of hyper-parameters.

= Some nice posts:
= https://distill.pub/2016/misread-tsne/
= https://www.youtube.com/watch?v=NEaUSP4YerM
= https://pair-code.qithub.io/understanding-umap/

Maaten et al (2008) Journal of Machine Learning Research
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Clustering and classification — Unsupervised machine learning

= Clustering
= Hierarchical clustering (R function: hclust())

= K-Means (R package “factoextra”,”cluster”)

= Model-based clustering, self-organizing maps (R package: “kohonen”,
“MBCluster.Seq”)

= Deep learning
= More methods: Oyelade et al. Bioinform Biol Insights. 2016: 10: 237253,

m) NATIONAL CANCER INSTITUTE
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135122/

Clustering and classification — Unsupervised machine learning

= Hierarchical clustering vs. K-Means
= Hierarchical clustering is favorable when
= there number of the clusters needs to be explored.
= we want to interpret the clustering structure.
= K-Means is favorable when
= the number of clusters is known.

= the numbers of the features and samples are large.

m) NATIONAL CANCER INSTITUTE
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Clustering and classification — Unsupervised machine learning

= Consensus Clustering could be used to determine the number of
possible clusters within gene expression data set.

Consensus Cumulative Distribution .
Function (CDF) Plot Cluster_separation_stats

04
03

g 02
00 -

____________

consensus

nnnnnnnnnnnnn

D) NATIONAL CANCER INSTITUTE — R package: ConsensusClusterPlus 56



Clustering and classification — Unsupervised machine learning

= How to validate the results?

= External validation: do genes/samples clusters correspond to their
known functions or biological features?

= Internal validation: Examine the inter- and intra-cluster relationship (e.g.
silhouette width.)

= Relative validation: How does it compare to other clustering? Is there
consensus in results?

m> NATIONAL CANCER INSTITUTE 57



Clustering and classification — Supervised machine learning

= Feature selection is a technique to identify the informative genes and to remove
the redundant and irrelevant genes. It does NOT obtain new features. Compared to
dimensionality reduction, the models are more interpretable.

= More resource:

= https://www.frontiersin.org/articles/10.3389/fgene.2020.603808/full
= https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00441-x

Steps . . V= RESIR
: Search Search { /=) Evaluation ( } Stopping Vs esult
Inpenihtet In @Direction @ Strategy W) Criteria Criteria "’@o Evaluation
Gene
Selecti
SEEE Sequential Threshold
|Classification| | Regression |
—| Exponential | —I Wrapper | | | Optimal Confusion
Subset - -
= —
Bi-Directional - -
m Embedded No o
Improvement | 7 y/aligation
Gene
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Mahendran et al., Front. Genet., 10 December 2020 %8


https://www.frontiersin.org/articles/10.3389/fgene.2020.603808/fullhttps:/journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00441-x
https://www.frontiersin.org/articles/10.3389/fgene.2020.603808/fullhttps:/journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00441-x

Clustering and classification — Supervised machine learning

= Filter Feature selection

= Example: Pearson correlation, Fisher
score, mutual information, model- ‘ Steasity
based ranklng emnat;);:smn : Fde:'Ievauce 2 ——
= Advantage: do not depend on ‘
classifiers; fast; can scaled to large B
data sets. "
= Disadvantage: Some filter feature

selection algorithms consider
univariate features, thus potentially
ignore the feature dependencies.

m> NATIONAL CANCER INSTITUTE Mahendran et al., Front. Genet., 10 December 2020 59



Clustering and classification — Supervised machine learning

= Wrapper Feature selection

= Example: Hill climbing, Forward

selection, Backward elimination.
= Advantage: the model tracks the S | e [T Ao
feature dependencies. . __
= Disadvantage: computationally
intensive for data sets with high Fmaton

dimension.

m> NATIONAL CANCER INSTITUTE Mahendran et al., Front. Genet., 10 December 2020 60



Clustering and classification — Supervised machine learning

= Embedded feature selection

= Example: LASSO regression, L1

Regression, ID3, Random forest. S
Select a
= Advantage: improved accuracy N
compared to filter and wrapper e e
methods; computationally less s i Algorim
intensive than wrapper methods; v
perform feature selection and learning mE

algorithm in parallel.

m) NATIONAL CANCER INSTITUTE Mahendran et al., Front. Genet., 10 December 2020



Clustering and classification — Supervised machine learning

= Classification
= Discriminant analysis
= Random forest
= Support Vector Machine
= K-nearest neighbor (KNN)
= Naive Bayesian classifier
= Decision tree
= Neural network
= Deep learning

= Resource: a review on the classifier software for gene expression data
(http://dx.doi.org/10.14257/ijbsbt.2015.7.4.10)

m) NATIONAL CANCER INSTITUTE
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Fusion gene detection

Difei Wang
Bioinformatics Manager
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What are fusion genes?

Gene A Gene B
break break
DNA exon exon 17 exon 7 exon exon
O h N N , 4 7 @,
N joining .~
DNA exon exon oS exon fusion gene
O
4
\ !
\ 1
\ 1
\ 1
A
V!
. . .
RNA exon exon exon exon fusion transcript
O

junction point https://www.tumorfusions.org
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What may cause fusion genes?

" wT chromosome Novel joint point
/ Inversion
rssron CmD c::-:D
C_T17 >
Types of s *
chromosomal Balanced
translocation Dupllcatlon
rearrangements C—CI w1 Deletion
CTD x oD *
k *

B) Coding DNA rearrangement C) Noncoding DNA rearrangement D) RNA cis-splicing

W«F = - m!’ = - -"—"*nrl- {H -t

Readthrough
l Rearrangement l Rearrangement l transcription
+p,m..;g¢|;:.[[.mgj_ .m.;,ﬁ.mﬂ.u.n} NS _— SRR Twoigenesane
. ) Increased neigthI'S
fu n Ct lIona I Transcription transcription Splicing
chimeric RNA SIEHE= <EEAE= pppp= chimeric RNA
outcomes of gene  ctimercra. T o Pt
fUSIonS l Translation Translation l Translation

= == = = mm = == g
Chimeric protein WT protein Chimeric protein

2 %ee%e
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PMID: 32307742
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Why are they important?

Chromosome 9

Chromosome 22

Ber

Philadelphia (Ph)
chromosome

gene

U

Abl

Philadelphia

X

Fusion gene
(Ber and AbI
combined)

chromosome

1960s
Peter C. Nowell
David A. Hungerford

A piece of chromosome 9 and
a piece of chromosome 22
break off and trade places.

m NATIONAL CANCER INSTITUTE

~ 20 yrs later BCR-ABL
fusion in CML patients

The BCR-ABL gene is
formed on chromosome
22 where the piece of
chromosome 9 attaches.

Imatinib, a TKI that
specifically targets the
BCR-ABL1 fusion protein in
CML, is approved by the FDA

Gleevec

FDA approved in 2001

BCR-ABL kinase (green)
Gleevec (pink) 1IEP

Thanks to the next-generation sequencing and
TCGA project, more novel disease-causing fusion
genes were discovered. They can serve as
potential targets for new therapies.
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How to detect fusion gene?

- Guided approach
- Cytogenetic data
- Fluorescence in situ hybridization (FISH) :

= High-throughput array-based analyses

Figure 4| Gene fusion reports. The number of new gene fusions reported each year from 1982 to
2014 (REF. 5) is shown. Unbiased gene fusions are those detected by deep sequencing, whereas
guided gene fusions represent those identified as the result of molecular analyses directed by prior

- Unbiased gene fusion detection

- Deep-sequencing technologies/Next-generation sequencing (NGS)

PMID: 25998716
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How to detect fusion gene through sequencing?

Step1: DNA-seq and RNA-seq Step2: in silico detection of fusion genes

e s—— A. insert and read B. Pair-end
Genomic DNA _ ==— ‘
e =2 B =T e S s e (] 5— >
= = = === ] -
- — = —

B) RNA Sequencing (RNAseq)

Total RNA

NG T - R o
NS i Y T e === T C. discordant read pairs and junction spanning reads
e fRNA depletion e - —=__ ) ]

“discordant read pairs”

Step3: Validation of identified fusion genes

Gene A

ST7 MET

! exon ’ exon exon exon exon exon
CETTCTTE GCCTGT CCTTTTHT TG 1

' Sanger Sequencing

3000

“junction spanning reads”

» | JLNMM A Mf\“ao M\MMQ LQA https://www.tumorfusions.org

RT-PCR

Sign
2000

1000

% PMID: 32307742

Residue Positi

m NATIONAL CANCER INSTITUTE
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Current bioinformatics tools for gene fusion detection

=  Benchmark
= Lijuetal. NAR 2015
. 24 tools, tested 15

=  OQverall performance rating: SOAPfuse >
FusionCatcher > JAFFA

®  Ericscript performed well on synthetic dataset

®=  SOAPfuse most computational demanding.

=  Kumer et al. Sci. Rep. 2016
®= 12 tools tested

®  Performance rating: Ericscript > FusionCatcher >
JAFFA

=  SOAPfuse failed to finish sometime.

m) NATIONAL CANCER INSTITUTE

Suggested tools

EricScript
FusionCatcher
JAFFA

STAR-Fusion (2019)

Arriba (2019)

(the winner of DREAM
SMC-RNA Challenge in 2018)

PMID: 26582927
PMID: 26862001
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Visualization of gene fusion

RCC1-HENMT1 Novel Fusion in Testicular Germ Cell Tumors

Chromosome 1 [:l:

TN

10 (6.4)

Chromosome 1

il

. 8 88 8 8

|

RCC1

I M -

N

LI

HENMT1

1

52883 mb 28.85 mb 28.87 mb o
& 28.84 mb 28.86 mb s

+ strand

Table 1. Nominated breakpoints from deFuse analysis of RNA-sequencing data

109.2 mb

o
g 109.21 mb

109.19 mb

- strand gene converted
to + for visualization

109,15:5:‘

Cell line Gene A Gene B Chromosome bands Distance (kb) deFuse score (o]
2102Ep CLEC6A CLEC4D 12p13.31 12p13.31 31 0.99 Y
CD9 ANO2 12p13.31 12p13.31 253 0.97 Y.

TSPAN9 FOXJ2 12p13.33-p13.32 12p13.31 4,790 0.97 Y

TSPAN9 Gucy2c 12p13.33-p13.32 12p13.1-p12.3 1,370 0.94 Y

m— — — —

| 833KE CLEC6A CLEC4D 12p13.31 12p13.31 31 0.99 Y
RCC1 HENMTI 1p35.3 1p13.3 80,325 0.92 Y

EPTI GUCYIA3 2p23.3 49321 0.97 Y

NTERA2 CLEC6A CLEC4D 12p13.31 12p13.31 31 0.83 Y
ETVE RPI1-434C1.P 12p13.2 12p13.2 59 0.81 Y

PPP6R3 DPP3 Nq13.2-13.3 1q13.2 1,951 0.82 Y

RCCI ABHDI2B 1p35.3 149221 0.98 Y

NOTE: Nine breakpoints remained after heuristic filtering steps of initial candidates. Of these, CLEC6A-CLEC4D was nominated in all three EC cell lines. Breakpoints
are listed according to the cell lines in which they were identified and with ascending genomic distance between the two partner genes. Presence of ORFs was

determined using the ORF finder at the National Centre for Biotechnology Information.

2RP11-434C1.1 was nominated as a partner to ETV6, located 85 kb downstream. However, visual inspection revealed that the breakpoint localized to noncoding

regions between these two genes and reflects an alternative promoter of ETV6.

m) NATIONAL CANCER INSTITUTE

* ok *

defuse 833KE, circos plot
Others either read through or intron involved.

PMID: 26659575
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Further evidence of detected fusion genes

EML4-ALK fusion gene
in NSCLC

m) NATIONAL CANCER INSTITUTE

Expression changes of fusion gene

Expression log,(FPKM+1)

4

~n
o
N

5 gene

3’ gene

“TEML4-ALK

@
N

Fusion (+)

I

EML4-ALK

Fusion (-) Fusion (+)

Fusion (-)

ChimerDB 4.0
PMID: 31680157
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Novel or known fusion genes

Home

12500
EMLA-ALK About ChimerDB
NscLs ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data (ChimerSeq) and text
= 10000 BCR-ABLL Catalogue Of Somatic Mutations In Cancer mining of PubMed publications (ChimerPub) with extensive manual annotations (ChimerKB). This update version 4.0 contains 67,610
¢ = ) fusion genes. Major improvements are as follows:
3 [ CcML
s 2
% ,-9, * ChimerSeq covers all TCGA data and provides the ChimerSeq-Plus subset as highly reliable fusions.
R o
T o 7500 J TMPRSS2-ERG « Quality of ChimerPub content was greatly enhanced by applying a new "deep learning"-based text-mining method followed by extensive
- = ProstateCancer iy
Q o
L * ChimerPub-Plus that contains fusions with literature and experimental supports increased ChimerKB's content by ~50%.
Q 1%}
'd; > 2 5000 * ChimerSeq module supports diverse visualization tools including fusion structure view, gene expression plot, STRING network view, and
© » T circos plot.
(7] (]
oL 7
o E
E «© Callueadds [lITTCLEUO) Callueansias
G o 2500
S.Q * ChimerKB (chimerps 3.1) covub’ﬁ.‘a RNA-Seq data
30 million biomedical literature The Cancer Genome Atlas  Sequence Read Archive
COSMIC __ ChimerDB:o [ e ) ( Jo 34 tumor samples; {Normat simples
. & = 4 1148 sampie
S ————— TiCdy  OMIM . ol P
M LY i L Gentank searc s [ | 27w JTS, S [
i5¢ 8 52358 5 3 i
M § 1 g” £ 55 g2 ;:; Literature Curation _,% 6,010 fusions :‘“7 sheliwcts Fusion gene prediction
g8 § g g b § § a3z we= g with 3 high-performance tools
g gp ic 2% 833 ChimerPub 3.0 7 o
o] 4 EY 8 u i, § § + 2,767 fusions 8,554 abstracts B
£ 5 2 ge
] ; : i *
g2 2 g% g 83 58 i - Manual curation
‘ 2 g5 B8 §§ ChimerPub PIFS o False positives removed 142 ChimerDB 20 23,978 TCGA FAWG
§ g g 56 Abstracts with validation :;;:tm;':\'l:l":::;;:: 16270 ChT:RS: 18,404 TJrﬁnr;us}ons
‘ f : 3 .
1= z i 9
H EE g i = ‘
§ g 3 H H ChimerKB (1,597 fusions) ChimerPub (1,257 fusions) ChimerSeq (65,945 fusions)
Fusion genes 12,377 sentences, 9,638 abstracts 21,106 fusions from multiple sources(ChimerSeq-Plus)
Overview of ChimerDB4.0
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Allele-specific expression

Difei Wang
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What is allele-specific expression (ASE)?

()
Allelic balance Allele-specific expression Monoallelic expression
or allelic imbalance
(b) Allelic expression (© Context-dependent allele-specific expression
quantification with RNA-seq >
. = QO . O
quantification O v sl

m NATIONAL CANCER INSTITUTE

e.g. X-chromosome
inactivation

Potential
mechanism

PMID: 33383480
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Current tools for ASE detection

ASEReadCounter (GATK package)

*  From fastq to a table of allelic counts
Qllelic

=  Starting with the allelic count table, estimate allelic imbalance and overdispersion
EMASE-Zero

*=  From bam -> alntools -> table
ASEP

=  From the allelic count table
phASER

*  From fastq
WASP

*  From aligned BAM + SNP info to correct reads mapping, count

PMID: 34099647
PMID: 29444201
PMID: 27605262
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Quality control of genotype data

- Het-SNP only

- Genotyping error can be an essential source of false signals of
allelic imbalance.

- Errors are more common in imputed data

A B =
S
o
S AR LY RStk . 2 aan S O Inlcuded
Pt ot 2 & T kot S St P S 0 Excluded
7} c o
o g >
% . 3 °
g & .“I..'....‘ ..o 0"’- e .. :.'-- ".o". 8 LAY §
.‘_! ....u . . . : =) raves ° E’ Ll
o . ¥ g Al < Red: not
s 27 \ ' 5 o supported
8 E ° PP
9 c
2 Low Exome-seq| = by RNA-Seq
; * OMNI 5M
T T T | | | | I [ | |
0 50 100 150 10 50 500 5000
Individual Total SNP Read Count PMID: 33383480
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Quality control of allele counting

= All the reads counted over a site indeed originate from that genomic locus.
Uniquely mapped reads only.

= All reads from that locus are counted.

= Allelic mapping bias. Remove ~ 20% het-SNPs fall within regions of low
mappability

= Use a variant-aware aligner like GSNAP, or align to a personalized genome.

PMID: 33383480
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Guidelines for allele-specific expression analysis

Genotyping

Preferred:
whole genome sequencing,
exome sequencing,
genome-wide arrays + imputation

h 2

Quality check and
identification of
heterozygous variants
(REF 1)

- Identification of ASE (REF 1,2)

- Comparison with eQTL datasets

m NATIONAL CANCER INSTITUTE

RNA-seq

Preferred:
high complexity
mRNA libraries
sequenced at high depth

A 2

Quality check
of FASTQ files (e.g. with fastqc)

L 2

Align reads to reference
genome

(e.g. with STAR “2 Pass’, REF 70)

L 2

Reduce mapping bias at
heterozygous sites (e.g. with
WASP within STAR, REF 38)

S 2

Remove/mark

PCR duplicates (e.g. with Picard)

2 2

Count reads with each allele
at heterozygous sites
requiring minimum mapping

quality, base quality, number of

reads per site (e.g. with

GATK ASEReadCounter, REF 1, 2)

: 4

Quality check
of allelic quantifications (REF 1)

A 2

Downstream analyses

- Haplotype level ASE (REF 2, 71)

- Identification of ASE

outliers (REF 44)

Special cases

- Single-cell RNA-seq
(REF 58, 59)

-HLA genes
(REF 11, 39, 40)

- Somatic variants
(REF 32, 33)

To look out for

A sample with the following
properties can indicate sample
mismatch between genotype
and RNA-seq, sample RNA
cross contamination or

low library complexity:

- Low propotion of sites
with both alleles seen

- Wide reference fraction
distribution/large proportion
of sites with ASE

- High fraction of genotype
warnings by ASEReadCounter

Mean reference fraction >0.5
indicates reference mapping
bias.

- Differential ASE between
conditions (REF 11,12, 13)

- Identification of putative
regulatory variants (REF 5, 47, 48)

PMID: 33383480
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ASE in high-risk neuroblastoma

=  Few recurrent somatic Four example mechanisms causing ASE
mutations A Somatic Copy Number Alteration e

—~C~—

—~C~_
—E’——allele1
' ’/:8% ~&— (copy)
ala oo allele —m—allelm

= Frequent somatic copy
—“—allelez

number variations (SCNASs)

allele2 ™

Nonsense mediated decay triggered by premature stop mutations

. ] NMD &EJC removed
= 96 high-risk neuroblastoma . nosn R, v
tu mors —E_—q— exon junction Translation
allele2 NMD complex

i iPremature stop codon ’ mRNA degraded
retained k’\, )(

. Identified 1043 genes with S G )

exon Junctlon No translation

recurrent, neuroblastoma- Promoter methylation Regulatory mutation

G ~—~C ™~

specific allele-specific RS e 2
expression (NB-ASE) an A~ —

— mm——llele? M s allele?
Promotgr Unobserved
methylation regulatory mutations PMID: 35246212
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DNA allele imbalance

A D
. 3
1. Pipeline for DNA allele imbalance . . . -
& 10] A 3 13
Exome-seq o il . 4
S : . . .;’
. 25 . 4 - 684 ASE,SCNA
Allele specific read counts 9 : ,! P o d .bed 4 LEI
o‘. i = : Bl oY
| .. 32 .0 sl Ngho WL, FDR=0.1___
0 i -u“f ave '.:" . "0“‘" %ﬁi'fl s 251 ASE, non'SCNA
Combine allele-imbalance T Q¥ @ T L Q- RO N
(20 exons) 5 5 555555855555
Difference
between E
¢ q atumor - anormal (da) KIF1B (1p36.22) IP6K2 (3p21.31)
umor an o= 0677 N FASSRS [ rho = 0.52 A l)‘EAPLSD A| @ ASE
normal 03| FOR = 2.46-07 parafi | FOR=0000436 PPV ® noASE
: g ' PASWY! CNN
Circular binary 0 Rt o 2 SCNA
segmentation go2 % A PALBEW
Z PAPEFE Aeamzer
Qo .. mem? ....................................
SCNA score PASZP! . ° o
PARZIPe
" " 0.0 o ,0° o~ .
2. Comparison of DNA allele imbalance sl Ll fadls
between samples 00 01 02 03 04 05 00 01 02 03 04 05
ASE(arns) ASE(arna)

PMID: 35246212
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RNA allele imbalance

A Nonsense mediated decay triggered by premature stop mutations
OEJC removed

high complexity
mRNA libraries
750 762 llele mlI?NA mRNA retained sequenced at high depth
allele splicing B .
_[.—_q_ - juncllon Translation 3

500 allele2 P NMD complex Quality check

1 ; remalure stop codon mRNA degraded of FASTQ files (e.g. with fastqc)
250 mRNA Metamed k'v)( . 4
—_— o A~ Align reads to reference
4

splicing
exon junction No translation genome
(e.g. with STAR “2 Pass’, REF 70)

¥

Reduce mapping bias at
heterozygous sites (e.g. with
WASP within STAR, REF 38)

3

Remove/mark
ce PCR duplicates (e.g. with Picard)

A 2

Count reads with each allele
at heterozygous sites
requiring minimum mapping
quality, base quality, number of
L3 b reads per site (e.g. with

ASE_non-SCNA ASE_SCNA  non-ASE GATK ASEReadCounter, REFT, 2)
. 4

Recurrent ASE outside of common SCNA regions, including ek e
TFAP2B and PTPRH, both low expression in stage 4 disease
and evidence for tumor suppressor activity.

RNA-seq

Preferred:

—_
o
o
o

Number of somatic mutations
w
N
o
N

o

m

stop lost

n -
[72]
g 8
3 <
o 8
k! 2
=
w

stop gained
splice region

splice acceptor . Q
stop gained

NB-ASE genes with
top-gain mutations

w
@]
z
>
Q
o]
=
@

Genes with
correlated
ASE and
SCNA

stop-gain mutation rate

o

log2(observed / expected)

PMID: 35246212
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RNA Editing Detection
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RNA modifications

DNA

H [TRANSCRPTION |

| l “ l|l l/"l | [TRANSLATION|
folypoptide

WARNA

* RNA modification is one of the most important
mechanisms for post-transcriptional regulation of human
genome

* According to Modomics (https://genesilico.pl/modomics/),

currently, more than 300 RNA modifications have been

identified almost involved with all types of RNAs.

(PMID: 32300195)

RNA modification is the chemical modifications that happen

on RNAs after they are transcribed from DNA, before

translated to protein.

RNA modifications can change the sequence, structure,

stability, and function of RNA molecules, thereby impacting

genes expression, transcripts structure and a w

cellular processes.

CHa 1 NH,

e e 60 gl 011
°h b H th

OHOH OH OH OH OH OHOH
m’G m°C
RHA \_/\
Writers * METTL1 * METTL3-METTL14  « TRMT10 * NSUN1 to
* WBSCR22 * METTL16 * TRM6- NSUN7
* RNMT * METTL5 TRM61 * DNMT2
* ZCCHC4
MeRIP-seq

de range.

NH,
N Ay

%
HO. <N | N/)
OHOH

N
NH
<X,
NN

T

0.

OHOH

* ADAR1 and
ADAR2

* ADAT2 and
ADAT3

RNA-Seq

of



https://genesilico.pl/modomics/

Milestones in RNA Editing Discovery

« RNA editing is the RNA modification that directly changes RNA sequences

without any corresponding mutation at DNA level.

Ad ine Deami are Massive Di yof RNA

RNA Editing is Established A-to-1 Editing is Observed involved in RNA Editing Editing Sites

Benne and colleagues observed a Researchers propose that A-to-l Kim and colleagues identified New sequencing technology,
frameshift in the conserved coxil editing is responsible for adenosine deaminases, presently combined with the efforts of
gene of trypanosomes as a disrupting base-pairing of dsRNA, “ADAR’", as candidate enzymes Fhe Human Genome Project,
consequence of RNA editing leading to dsRNA being unwound for RNA editing increased identification of
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Researchers identified a C-to- Researchers identified that Editing
U transformation in cytidine deaminases,
mammalian apo-B100, which presently “APOBEC", are Nove_l in vitro systems helped
resulted in the introduction of responsible for C-to-U editing confirm the cleavage-ligation
a premature stop codon observed in apo-8100 pathway as the mechanism for

RNA editing
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RNA editing V.S. RNA variations

% RNA-editing # RNA-based variations Editing Type Frequency
+ Various kinds of substitutions can be detected at
RNA Level using RNA-Seq, e.g. A>C, C>A, G>A, 1
G>T... Most of them are originally from genomic 5
Variation f
 The A-to-l (A>G) and C-to-U (C>T) are only two
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Molecular functions of RNA editing
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Clinical implication of RNA editing events in cancer study

Patients’ RNA editing profile

)
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Methods for detecting RNA editing events

< Detecting the differences between DNA-Seq and RNA-Seq results

(1) DNA-Seq/RNA-Seq paired (accurate but time consuming & expensive)

(2) RNA-Seq only, known RNA editing database is required (>20 times faster than (1), most widely used strategy)

DNASeq |

(WGS)

Reference

Genome

RNASeq -

nature
protocols

PROTOCOL

https://doi.org/10.1038/541596-019-0279-7

Investigating RNA editing in deep transcriptome
datasets with REDItools and REDIportal

GTGACGATAATGCGCGCATACGATCAGTCAAAG
1(;TGACGATAATGCGCGCATACGATCAGTCAAAG
1(;TGACGATAATGCGCGCATACGATCAGTCAAAG
1(;TGACGATAATGCGCGCATACGATCAGTCAAAG
:@TGACGATAATGCGCGCATACGATCAGTCAAAG

GTGACGATAATGCGCGCATACGATCAGTCAAAG
T

GTGACGATAATGCC}S;@QF:‘(@)CGATCAGTCAAAG
T
GTGACGATAATGCGCGCGTACGATCAGTCAAAG
T
GTGACGATAATGCGCGCGTACGATCAGTCAAAG

GATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
éATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
éATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
éATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
%ATCAGGCTAGTCAGGCACCTGATGTGTAGGAC

GATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
A

GATCAGGCTAGTCA@_@J@@‘I}GATGTGTAGGAC
A

GATCAGGCTAGT TGTGTAGGAC
: D S o]
GATCAGGCTAGTCAGGTACCTGATGTGTAGGAC

* Minimum mapping quality and base quality >20

* Minimum coverage for each site >10

» Exclude variation sites in multiple mapped and duplicated reads

+ Exclude variation sites in highly repeated genomic regions

« Trim 6 bases up in every sequencing

+ Maximum reads supporting variation for DNA and RNA across all
samples should be at least 15

+ Maximum editing level across all samples should be at lease 0.15

* Filtration of genomic mutation with dbSNP, gnomAD




Resources for RNA editing analysis

/2\ (% REDIportal . @ REDIportal
[ &) An ATLAS of A-to- RNA editing events in human and other organisms F An ATLAS of A-to-1 RNA editing events in human and other organisms

Welcome To REDIportal V2.0

- . Show 10rows ~ Column visibility = Download
The largest RNA editing resource for human and other organisms V2.0

Chr  Positon  |: Ref Ed Strand dbSNP  Locaton i  Repeats i Gene Ii  Region Ii Editedin ExFun Phast %
RNA editing is a relevant epitranscriptomic phenomenon by which primary RNAs are modified by base substitutions, insertions and/or -
deletions. In humans and other mammals, it mainly involves the deamination of adenosines to inosines by the ADAR family of enzymes ® @ v 108226807 AlG ]+ (5] ALL SINE/AluSc Ll UTRs u] o
acting on double RNA strands. A-to-| RNA editing has a plethora of biological effects and its deregulation has been linked to several - -
human disorders. To better investigate A-to-l editing in eukaryotes, we have updated our already rich REDIportal catalogue (4.5 ® @ oorr tosezee2s AlG| = (s ] ALY SINE/AluSc M UTR5 u] 0
millions), raising its collection to about 16 millions of events. REDIportal V2.0 is based on 9642 human RNAseq samples from 549 - 9
individuals (31 tissues and 54 body sites) of the GTEx project. Now users can search at position level (by providing a genomic region ® chril | 108226849 AlG + (s ] ALY SINE/AluSc ATM UTRS a 0
or a gene name) and at sample level (by providing at a sample accession name) to have an overview of RNA editing per RNAseq -
REDIportal V2.0 2 Gene View module to look at individual events in their genic context and hosts the CLAIRE ® shell; | 106227068 A G| = 5] ALl SINE/AluSg ATM Ui U] N
resource (- REDIportal V2.0 officially starts collecting RNA editing in non-human organisms. It currently stores 107,084 Acto-1 -
mouse eventa ftom nascent ANAseq data @ [ otrt1 108227079 A G + a ALU SINE/AluSg ATM UTRS o 0
® chri1 108227095 A G o+ 5] ALU SINE/AluSg ATM UTRS o (U] 0
Human Tissues loaded in the ATLAS =
”
Cllck the columns to view body stes. @ chri1 108227108 AlG + 8 ALU SINE/AluSg ATM UTR5 [u] 0
15 s
® chri1 108227110 A G o+ 5] ALU SINE/AluSg ATM UTRS 2 m 0
12.5%
P 10.0%
Y0
E 8.2985% 8.4%
5
g e D1012-D1019 Nucleic Acids Research, 2021, Vol. 49, Database issue Published online 26 October 2020

doi: 10.1093/narlgkaa916

REDIportal: millions of novel A-to-l RNA editing
events from thousands of RNAseq experiments
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THANKS FOR YOUR ATTENTION!
Questions?

Next: Practical session 10 (10:45am)

Lecture 12: Data visualization
May 15 (Monday) 9:30am — 12pm, Room TE406/408/410

m) NATIONAL CANCER INSTITUTE

91



