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Session overview

▪ Normalization and differential expression
▪ Isoform discovery and alternative splicing
▪ Pathway analysis
▪ Clustering and classification
▪ Fusion gene detection
▪ Allele-specific expression
▪ RNA editing
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Normalization and differential expression
Stephen	Hartley
Staff	Scientist
DCEG/LGS



Differential	Expression	Analysis

Study	Question:	
Are	there	genes	that	are	differentially	up/down	regulated	with	respect	to	our	
variable	of	interest	(exposure,	status,	etc.)



Differential	Expression	Analysis:	Overview

Step	1:	Quantification

Step	2:	Normalization

Step	3:	Statistical	Test	for	DE

A. Read-count	based	methods
B. Gene/transcript	quantification

A. RPKM	(obsolete)
B. DESeq2
C. edgeR
D. UQCT

A. DESeq2
B. edgeR
C. Simple	Regression	(for	large	studies)



Step	1:	Quantification
To determine if expression is different, first we must 
quantify expression levels:

The two main ways to quantify expression levels are:

1. Read Counts Based Methods
○ Directly count # reads covering a feature (gene, transcript, etc)
○ Must be normalized as a separate step

2. Gene/Transcript Quantification Based Methods
○ Use more complicated methods to estimate the quantity/proportions of different genes or 

transcripts
○ Most tools include normalization as part of the quantification step



● Originally, gene-level read counts would be normalized to transcript length 
(in kb), and to total # reads for the sample (in millions)
○ “RPKM” – Reads per Kilobase per Million
○ “RPM” – Reads per Million
○ “FPKM” – “Fragments” (aka read-pairs) per Kb per Million

● Because RPKM became the standard, many tools use proper 
normalization methods but then adjust the numbers into “RPKM” or “RPM”-
“like” units.

○ Sometimes estimate transcript abundances as “TPM” (transcripts per million)

Step	2:	Normalization
Read counts must be normalized so that they are comparable to one another

NOTE:	Do	not	do	this!
Better	normalization	methods	have	been	developed.	Do	NOT	just	divide	by	total	count.



Step	2:	Normalization
Read counts must be NORMALIZED so that they are comparable to one 
another!

There are several tools that will perform this normalization 
properly:
● edgeR (“TMM” normalization) 
● DESeq2 (“RLE” normalization)

The difference is usually minimal.

(Note: these tools also perform differential expression analysis, 
but you can also just use the normalization part.)



Gene/Transcript	Quantification	Based	Methods

Use more complicated methods to estimate the quantity/proportions of 
different genes or transcripts

Popular options:
● CuffLinks
● Kallisto

These tools generally output normalized expression levels for each gene 
and/or transcript.



Step	3:	Statistical	Tests	for	Differentials

How do we test for this? 
Depends on your study:

A. Traditional RNA-Seq study designs:
• Very small (~3 replicates case/control)

B. Large scale RNA-Seq studies:
• Much larger (10+ replicates per group)

Study	Question:	
Are	there	genes	that	are	differentially	up/down	regulated	with	respect	
to	our	variable	of	interest	(exposure,	status,	etc.)



Step	3:	Statistical	Tests	for	Differentials

A. Traditional RNA-Seq study designs:
• Very small (~3 replicates case/control)

Require specialized methods:
○ estimate dispersion with only 3 samples per group (share information between genes) 
○ Unusual probability distribution (negative binomial).

For count-based methods: 
○ edgeR and DESeq2 are the most common options

For transcript-quantification-based methods: 
○ CuffDiff (for use with Cufflinks)
○ Sleuth (for use with Kallisto)



Step	3:	Statistical	Tests	for	Differentials
B. Large scale RNA-Seq studies:

• Much larger (10+ replicates per group)

Specialized methods not necessary, can just use linear regression on:
• log-scaled normalized counts (count-based methods)
• TPM estimates (transcript quantification methods)

Central	Limit	theorem:	negative	binomial	distribution	is	irrelevant	with	large	sample	
size



Step	3:	Statistical	Tests	for	Differentials
Also	note:	in	large	sample	sizes,	specialized	methods	appear	to	overfit	/	inflate	p-

values

● In a recent project, I took a dataset and generated 9 
completely random case/control variables

● Ran DESeq2 and simple linear regression (on log-
normalized counts)

● DESeq2 showed statistically significant results



Step	3:	Statistical	Tests	for	Differentials
Also	note:	in	large	sample	sizes,	specialized	methods	appear	to	overfit	/	inflate	p-

values

DESeq2 Simple	Regression



Step	3:	Statistical	Tests	for	Differentials



Step	4:	Interpretation
Regardless of the method, the result traditionally includes:

● Results table
○ List of genes (or transcripts) with fold change and p-values

● “MA” plot.
x-axis: mean normalized counts (# read pairs per gene)
y-axis: fold change

Real-life	example:	
day/night	fold	change,	
TTC8	gene,	rat	pineal	
glands



Differential	Expression	Analysis
Main	takeaways

● DE analysis looks for differences in expression based on some study 
condition/exposure

● Three steps:
○ Quantification
○ Normalization
○ Statistics

● Two primary quantification methods: 
○ Count-Based
○ Transcript-Based

● Statistical Methods depend on study size
○ Small studies: Use standard DE/RNA-Seq tools
○ Large studies: Use simple regressions on log-transformed/normalized data
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Differential Splicing and Alternative 
Transcript Usage Analysis

Stephen	Hartley
Staff	Scientist
DCEG/LGS



Differential	Splicing	
Differential	Isoform	usage
Differential	Exon	Usage
Alternative	Isoform	Regulation
etc…
Analysis

Study	Question:	
Is	there	any	kind	of	differential	expression	regulation	occurring	among	a	
gene’s	transcript	set,	distinct	from	gene-level	differential	expression?



2	basic	types	of	differential	expression	regulation:

1) Differential Gene Expression (DGE/DEG/DE)
○ Entire gene is up/down regulated, depending on 

some experimental condition
○ Fairly straightforward: Use edgeR, DESeq2, or 

limma.

2) Alternative Isoform Regulation (AIR)
○ One or more specific transcripts/splice-

variants/exons/etc are being independently up/down 
regulated based on some experimental condition

○ Much trickier!

?

✓



Alternative	Isoform	Regulation
can	take	many	different	forms:

Image:	Wang,	Z.,	&	Burge,	C.	B.	(2008).	Rna,	14(5),	802-813.



…	and	can	be	caused	by	many	different	mechanisms

1Wang,	Zefeng,	and	Christopher	B.	Burge.	Rna 14.5	(2008):	802-813.
2Keren,	H.,	Lev-Maor,	G.,	&	Ast,	G.	(2010).	Nature	Reviews	Genetics,	11(5),	345-
355.
3Walsh,	A.	L.,	et	al.	(2014).	Trends	in	molecular	medicine,	20(8),	428-436.

Splicing	Activation1

Splicing	Repression1

Nucleosome	occupancy2 Long	Non	Coding	RNA’s3



The	result:	
Staggering	complexity

Exon	
Skipping

Intron	
Retentions

Alt	5’	
ends

Alt	3’	
ends

Alt	Acceptor

(25	known	isoforms)



Making it worse:
• Transcripts are >2kb
• Reads are <150bp
• Read coverage is not uniform
• Annotation is incomplete

– Usually VERY incomplete
• Interpretation is often very difficult

Analysis	of	Isoform-Level	Differences
is	REALLY HARD



The	Interpretation	Problem:

● Even if you detect AIR/DS/etc, interpretation is ALSO HARD.
○ Results often complex & counterintuitive
○ Dozens of isoforms, each (may be) regulated differently
○ Annotation might be wrong/incomplete

● Bottom line: it’s not like DE analysis
○ You can’t just report fold-change & p-value and call it a day.



There	are	many tools	
for	detecting	differential	splicing:

• Count-based:
– Detects differential splicing/etc by proxy, uses counts of individual components 

(exons, splice sites, etc)
– Examples: SUPPA2, rMATS, DEXSeq, edgeR, JunctionSeq (my tool)

• Isoform-based: 
– Detect AIR directly by estimating isoform abundances.
– Most tools do not test directly for splicing changes

– They allow you to test each isoform independently
– May indirectly discover differential splicing if you observe some isoforms 

changing and not others
– Examples: CuffDiff2, Kallisto, RSEM.

(Note: there are MANY more tools, but these at least have seen some real-life usage)



Problems with existing tools:
• Isoform-level tools just don’t work very well

– Fundamentally hard/impossible to quantify overlapping 2kb isoforms using 
<150bp fragments 

• Many tools have poor performance when annotation incomplete
– Many count-based methods perform very poorly when affected transcripts 

are not annotated (for obvious reasons)
– Annotation is always incomplete

Problems with existing tools:



Problem:	Illumina	data	does	not	give	us	full-length	Isoforms

648	paths!	
(potential	isoforms)



● Results should not be trusted without substantial validation
○ With the right primers, qPCR can validate splicing differentials
○ Long-read technologies can validate the existence of splicing variants. 

■ Confirm that they are coding, in-frame, full-length, etc.

● Interpretation should be in-depth:
○ Generate “wiggle” plots for UCSC browser (or IGV, etc). Examine expression levels across the 

gene
○ Examine gene closely: check for novel exons, novel splice junctions, genes on the opposite 

strand (if RNA-Seq is unstranded), overlapping genes.
■ These may cause false positives and/or misleading results

Differential	Splicing/Differential	Isoform	usage/Differential	Exon	Usage/Alternative	Isoform	Regulation/etc…	Analysis

INTERPRETATION	and	VALIDATION



E002,	E003

~30x	higher	
at	NIGHT

Novel	SJ

Applied	example:	the	TTC8	Gene	in	rat	pineal	glands



Region	of	Interest

Applied	example:	the	TTC8	Gene	in	rat	pineal	glands



Pick	an	(arbitrary)	subset	of	high-coverage	junctions:

Problem:	Illumina	data	does	not	give	us	full-length	Isoforms

648	paths!	
(potential	isoforms)

Still:	24	paths!

Take	all	possible	paths	through	the	gene:



PacBio	SMRT	Sequencing	Validation



PacBio	SMRT	Sequencing	Validation



● Numerous tools exist.
○ Two basic types: count-based or transcript-based

● Not for the faint of heart

● Interpretation and examination of results should be extensive and in-depth

● Don’t take results at face value: validation is important

● Hot take: don’t bother unless you’re willing to spend a lot of time/resources interpreting and 
validating the results

Differential	Splicing/Differential	Isoform	usage/Differential	Exon	Usage/Alternative	Isoform	Regulation/etc…	Analysis

Main	Takeaways
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Pathway and 
Gene Set Enrichment 

Analysis

Stephen	Hartley
Staff	Scientist
DCEG/LGS



Gene	Set	Enrichment	Analysis

Step	1:	Quantification

Step	3:	Statistical	Test	for	DE

A. Read-count	based	methods
B. Gene/transcript	quantification

A. DESeq2
B. edgeR
C. Simple	Regression	(for	large	studies)

Step	2:	Normalization
A. RPKM	(obsolete)
B. DESeq2
C. edgeR
D. UQCT

Step	4:	Gene	Set	Enrichment	
Analysis

A. GSEA
B. GSVA
C. ClusterProfiler
D. reactomePA



There are many different methods/tools for performing this sort of 
analysis, differ in details, but basic idea:
● Look at sets of genes
● Are the significant/substantial differentials concentrated in these sets

Gene	Set	Enrichment	Analysis

Study	Question:	
Are	there	pathways,	gene-ontology	keywords,	or	other	gene	
sets	that	are	disproportionately	represented in	the	results
of	an	RNA-Seq	analysis?



What can it do?

● Give you more information about the biological processes involved

● Assist in interpretation of RNA-Seq expression results

● Provide more information

Gene	Set	Enrichment	Methods



What is it NOT?

● Not always necessary in all differential expression analysis

● Not an easy way to get a p-value if you don’t come up with anything directly
○ It can be used for this in certain limited circumstances, but only carefully

Gene	Set	Enrichment	Methods



There are numerous different options for finding useful gene lists for use with GSEA.

● Molecular Signatures Database (MSigDB)
● Gene Ontology (GO)
● REACTOME pathway database

What	Gene	Lists?



MSigDB
LOTS of gene sets, separated into several main groups: 

H: Hallmark gene sets (50 sets)
○ Highly-curated sets that represent merge of multiple gene sets

C1: Positional gene sets (300 sets)
○ Gene sets corresponding to human chromosome cytogenetic bands

C2: Curated gene sets (6495 sets)
○ Curated from various sources, including online databases and the literature.
○ Many also contributed by individual experts.

C3: Regulatory target gene sets (3713 sets)
○ Gene sets representing potential targets of regulation by transcription factors or microRNAs.

C4: Computational Gene Sets (858 sets)
○ Gene sets generated in silico via data mining



MSigDB

Generally NOT recommended to test against entire MSigDB database.

Better to test against gene sets that are related to your study topic / known biological 
processes.



MSigDB



Gene	Ontology

The Gene Ontology Resource (GO) is a large database of genes organized into hierarchical keywords.

Examples:
● “biological process”
● “mitochondrion”
● “glucose transmembrane transport”
● “amino acid binding”

Each gene will belong to many GO terms.

Each term will often belong to many higher-level terms (ex: “metabolic process” belongs to “biological 
process”)



There are numerous different methods/tools for performing this sort of analysis:
● ClusterProfiler

○ Can use GO terms or other annotated lists

● reactomePA
○ Uses “REACTOME” database
○ Same developer as ClusterProfiler

● “GSEA”:
○ Developed by same group that created MSigDB

● GSVA: “Gene Set Variation Analysis”
○ Optionally allows for mixture of up/down regulation

Gene	Set	Enrichment	Methods



Gene	Set	Enrichment	Analysis
Main	takeaways

● Takes the results of Differential Expression analysis as input

● Can help with interpretation, can give more information about biological functions 
involved, etc.

● Several options for gene set database

● Several options for software analysis tools
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Clustering and classification

Wei	Zhao
Research	fellow

DCEG/ITEB



49

Clustering and classification – Common approaches

▪ Unsupervised machine learning: models 
to group samples with similar features 
together

▪ Dimensionality reduction

▪ Clustering

▪ Supervised machine learning: models to 
predict class of new sample

▪ Feature selection

▪ Classification

https://www.analyticsvidhya.com/blog/2021/11/quick-tutorial-clustering-data-science/
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Clustering and classification – Unsupervised machine learning

▪ Dimensionality reduction:  
▪ Principal component analysis (PCA)
▪ t-distributed stochastic neighbor embedding (t-SNE)
▪ Uniform Manifold Approximation (UMAP)

▪ Clustering
▪ Hierarchical clustering
▪ K-Means
▪ Model-based clustering
▪ Deep learning



51

Clustering and classification – Unsupervised machine learning

▪ Dimensionality reduction is the process of reducing the number of 
features when exploring the structure of high-dimensional data.

▪ Identifies the most relevant information
▪ Reduces computational time
▪ Does lose some information
▪ Used for data classification and visualization
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Clustering and classification – Unsupervised machine learning

▪ PCA
▪ Find component axes that maximize the 

variance of the data
▪ A linear method
▪ Fast and easy to apply
▪ Interpretable results
▪ Can be used to filter the top significant 

PCs
▪ Limited performance when the data is 

not linearly separable
▪ Not optimized for 2D visualization

https://sebastianraschka.com/Articles/2014_python_lda.html
https://sebastianraschka.com/Articles/2014_kernel_pca.html
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Clustering and classification – Unsupervised machine learning

▪ tSNE and UMAP are both graph-based non-linear methods. And 
are optimized for 2D visualization

▪ tSNE is a stochastic algorithm
▪ tSNE preserve local structure, but not global. (i.e. the distant 

proximity is NOT informative).
▪ UMAP preserves better the global structure, and can control the 

balance between local and global structure with parameters.
▪ UMAP is much faster than tSNE.
▪ Both requires optimization of hyper-parameters.
▪ Some nice posts:

▪ https://distill.pub/2016/misread-tsne/
▪ https://www.youtube.com/watch?v=NEaUSP4YerM
▪ https://pair-code.github.io/understanding-umap/ Maaten et al (2008) Journal of Machine Learning Research

When there are too many samples and the goal is to is to identify cell types (e.g. scRNA-
seq), usually we use tSNE and UMAP. 

https://distill.pub/2016/misread-tsne/
https://www.youtube.com/watch?v=NEaUSP4YerM
https://pair-code.github.io/understanding-umap/
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Clustering and classification – Unsupervised machine learning

▪ Clustering
▪ Hierarchical clustering (R function: hclust())

▪ K-Means (R package “factoextra”,”cluster”)

▪ Model-based clustering, self-organizing maps (R package: “kohonen”, 
“MBCluster.Seq”)

▪ Deep learning
▪ More methods: Oyelade et al. Bioinform Biol Insights. 2016; 10: 237–253.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135122/
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Clustering and classification – Unsupervised machine learning

▪ Hierarchical clustering vs. K-Means
▪ Hierarchical clustering is favorable when
▪ there number of the clusters needs to be explored.

▪ we want to interpret the clustering structure.

▪ K-Means is favorable when
▪ the number of clusters is known.

▪ the numbers of the features and samples are large.
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Clustering and classification – Unsupervised machine learning

▪ Consensus Clustering could be used to determine the number of 
possible clusters within gene expression data set.

consensus
Consensus Cumulative Distribution 

Function (CDF) Plot Cluster_separation_stats

R package: ConsensusClusterPlus
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Clustering and classification – Unsupervised machine learning

▪ How to validate the results?
▪ External validation: do genes/samples clusters correspond to their 

known functions or biological features?

▪ Internal validation: Examine the inter- and intra-cluster relationship (e.g. 
silhouette width.)

▪ Relative validation: How does it compare to other clustering? Is there 
consensus in results?
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▪ Feature selection is a technique to identify the informative genes and to remove 
the redundant and irrelevant genes. It does NOT obtain new features. Compared to 
dimensionality reduction, the models are more interpretable.

▪ More resource:
▪ https://www.frontiersin.org/articles/10.3389/fgene.2020.603808/full
▪ https://journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00441-x

Clustering and classification – Supervised machine learning

Mahendran et al., Front. Genet., 10 December 2020

https://www.frontiersin.org/articles/10.3389/fgene.2020.603808/fullhttps:/journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00441-x
https://www.frontiersin.org/articles/10.3389/fgene.2020.603808/fullhttps:/journalofbigdata.springeropen.com/articles/10.1186/s40537-021-00441-x
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▪ Filter Feature selection

▪ Example: Pearson correlation, Fisher 
score, mutual information, model-
based ranking.

▪ Advantage: do not depend on 
classifiers; fast; can scaled to large 
data sets.

▪ Disadvantage: Some filter feature 
selection algorithms consider 
univariate features, thus potentially 
ignore the feature dependencies.

Clustering and classification – Supervised machine learning

Mahendran et al., Front. Genet., 10 December 2020
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▪ Wrapper Feature selection
▪ Example: Hill climbing, Forward 

selection, Backward elimination.

▪ Advantage: the model tracks the 
feature dependencies.

▪ Disadvantage: computationally 
intensive for data sets with high 
dimension.

Clustering and classification – Supervised machine learning

Mahendran et al., Front. Genet., 10 December 2020
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▪ Embedded feature selection

▪ Example: LASSO regression, L1 
Regression, ID3, Random forest.

▪ Advantage: improved accuracy 
compared to filter and wrapper 
methods; computationally less 
intensive than wrapper methods; 
perform feature selection and learning 
algorithm in parallel.

Clustering and classification – Supervised machine learning

Mahendran et al., Front. Genet., 10 December 2020
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▪ Classification
▪ Discriminant analysis
▪ Random forest
▪ Support Vector Machine
▪ K-nearest neighbor (KNN)
▪ Naïve Bayesian classifier
▪ Decision tree
▪ Neural network
▪ Deep learning

▪ Resource: a review on the classifier software for gene expression data 
(http://dx.doi.org/10.14257/ijbsbt.2015.7.4.10)

Clustering and classification – Supervised machine learning

http://dx.doi.org/10.14257/ijbsbt.2015.7.4.10
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Fusion gene detection

Difei	Wang
Bioinformatics	Manager

DCEG/CGR
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What are fusion genes?

https://www.tumorfusions.org
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What may cause fusion genes?

PMID: 32307742
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Why are they important?

1960s
Peter C. Nowell
David A. Hungerford

A piece of chromosome 9 and 
a piece of chromosome 22 
break off and trade places. 

~ 20 yrs later BCR-ABL 
fusion in CML patients

The BCR-ABL gene is 
formed on chromosome 
22 where the piece of 
chromosome 9 attaches. 

Thanks to the next-generation sequencing and 
TCGA project, more novel disease-causing fusion 
genes were discovered. They can serve as 
potential targets for new therapies.

BCR-ABL kinase (green)
Gleevec (pink) 1IEP

FDA approved in 2001



67

How to detect fusion gene?

▪ Guided approach
▪ Cytogenetic data

▪ Fluorescence in situ hybridization (FISH)

▪ High-throughput array-based analyses

▪ Unbiased gene fusion detection
▪ Deep-sequencing technologies/Next-generation sequencing (NGS)

PMID: 25998716
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How to detect fusion gene through sequencing?
Step1: DNA-seq and RNA-seq Step2: in silico detection of fusion genes

https://www.tumorfusions.org

Step3: Validation of identified fusion genes

RT-PCR
Sanger Sequencing

PMID: 32307742
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Current bioinformatics tools for gene fusion detection

EricScript
FusionCatcher
JAFFA

STAR-Fusion (2019)
Arriba (2019)
(the winner of DREAM 
SMC-RNA Challenge in 2018)

PMID: 26582927
PMID: 26862001

▪ Benchmark
▪ Liu et al. NAR 2015 

▪ 24 tools, tested 15

▪ Overall performance rating: SOAPfuse > 
FusionCatcher > JAFFA

▪ Ericscript performed well on synthetic dataset

▪ SOAPfuse most computational demanding.

▪ Kumer et al. Sci. Rep. 2016

▪ 12 tools tested

▪ Performance rating: Ericscript > FusionCatcher > 
JAFFA

▪ SOAPfuse failed to finish sometime.

Suggested tools
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Visualization of gene fusion

PMID: 26659575

RCC1-HENMT1 Novel Fusion in Testicular Germ Cell Tumors 

*

*
*

defuse 833KE, circos plot
Others either read through or intron involved.

+ strand - strand gene converted 
to + for visualization

***
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Further evidence of detected fusion genes

Expression changes of fusion gene

ChimerDB 4.0
PMID: 31680157

EML4-ALK fusion gene
in NSCLC
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Novel or known fusion genes
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Allele-specific expression

Difei	Wang
Bioinformatics	Manager

DCEG/CGR
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What is allele-specific expression (ASE)?

e.g. X-chromosome 
inactivation

PMID: 33383480

ASE

ASE 
quantification

Potential 
mechanism 
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Current tools for ASE detection
▪ ASEReadCounter (GATK package)

▪ From fastq to a table of allelic counts
▪ Qllelic

▪ Starting with the allelic count table, estimate allelic imbalance and overdispersion
▪ EMASE-Zero

▪ From bam -> alntools -> table
▪ ASEP

▪ From the allelic count table
▪ phASER

▪ From fastq
▪ WASP

▪ From aligned BAM + SNP info to correct reads mapping, count 

PMID: 34099647
PMID: 29444201
PMID: 27605262
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Quality control of genotype data

▪ Het-SNP only
▪ Genotyping error can be an essential source of false signals of 

allelic imbalance.
▪ Errors are more common in imputed data

Low 
quality

Red: not 
supported 
by RNA-seq
data 

PMID: 33383480
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Quality control of allele counting

▪ All the reads counted over a site indeed originate from that genomic locus. 
Uniquely mapped reads only.

▪ All reads from that locus are counted.

▪ Allelic mapping bias. Remove ~ 20% het-SNPs fall within regions of low 
mappability

▪ Use a variant-aware aligner like GSNAP, or align to a personalized genome.

PMID: 33383480
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Guidelines for allele-specific expression analysis

PMID: 33383480
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ASE in high-risk neuroblastoma
▪ Few recurrent somatic 

mutations

▪ Frequent somatic copy 
number variations (SCNAs)

▪ 96 high-risk neuroblastoma 
tumors

▪ Identified 1043 genes with 
recurrent, neuroblastoma-
specific allele-specific 
expression (NB-ASE)  

Four example mechanisms causing ASE

PMID: 35246212

NMD
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DNA allele imbalance 

Difference 
between 
tumor and 
normal

PMID: 35246212
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RNA allele imbalance

Recurrent ASE outside of common SCNA regions, including 
TFAP2B and PTPRH, both low expression in stage 4 disease 
and evidence for tumor suppressor activity.

Genes with 
correlated 
ASE and 
SCNA

PMID: 35246212
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RNA Editing Detection

Jian	Sang
Postdoc	

Fellow
DCEG/ITEB



MeRIP-seq

• RNA modification is the chemical modifications that happen

on RNAs after they are transcribed from DNA, before

translated to protein.

• RNA modifications can change the sequence, structure,

stability, and function of RNA molecules, thereby impacting

genes expression, transcripts structure and a wide range of

cellular processes.

• RNA modification is one of the most important

mechanisms for post-transcriptional regulation of human

genome

• According to Modomics (https://genesilico.pl/modomics/),

currently, more than 300 RNA modifications have been

identified almost involved with all types of RNAs.

RNA Editing

RNA modifications 

RNA-Seq
(PMID: 32300195)

https://genesilico.pl/modomics/
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Milestones in RNA Editing Discovery

❖ RNA editing is the RNA modification that directly changes RNA sequences 

without any corresponding mutation at DNA level.

(PMID: 32650588)



❖ RNA-editing  ≠  RNA-based variations

• Various kinds of substitutions can be detected at

RNA Level using RNA-Seq, e.g. A>C, C>A, G>A,

G>T... Most of them are originally from genomic

Variation

• The A-to-I (A>G) and C-to-U (C>T) are only two

existed RNA-Editing types that have been verified

through molecular experiments.

RNA editing V.S. RNA variations 

A-to-I C-to-U



• ADAR1

• ADAR2

• ADAR3

• APOBEC1

• APOBEC2

• APOBEC3A

• APOBEC3B

• APOBEC3C

• APOBEC3D

• APOBEC3F

• APOBEC3G

• APOBEC3H

• APOBEC4

• AICDA 

The Alu region is a family of highly repeated

regions in human genomes, are responsible

for regulation of tissue-specific genes

The schemes of RNA editing events

A-to-I

C-to-U

A-to-I Editing

(92.27%)

C-to-U Editing

(2.2%)

Non-Alu sites

(13.2%)

Alu sites

(86.8%)

Guanine

Thymine

A I

C U

G

T



• Increase the diversity of cellular
transcriptome

• Improve adaptation to internal and
external changes

(PMID: 29127844)

Molecular functions of RNA editing



Clinical implication of RNA editing events in cancer study

(PMID: 29127844)



Methods for detecting RNA editing events

❖ Detecting the differences between DNA-Seq and RNA-Seq results

(1) DNA-Seq/RNA-Seq paired  (accurate but time consuming & expensive)

(2) RNA-Seq only, known RNA editing database is required (>20 times faster than (1), most widely used strategy)

• Minimum mapping quality and base quality >20
• Minimum coverage for each site >10
• Exclude variation sites in multiple mapped and duplicated reads

• Exclude variation sites in highly repeated genomic regions
• Trim 6 bases up in every sequencing
• Maximum reads supporting variation for DNA and RNA across all

samples should be at least 15
• Maximum editing level across all samples should be at lease 0.15
• Filtration of genomic mutation with dbSNP, gnomAD

GTGACGATAATGCGCGCATACGATCAGTCAAAG
T
GTGACGATAATGCGCGCATACGATCAGTCAAAG
T
GTGACGATAATGCGCGCATACGATCAGTCAAAG
T
GTGACGATAATGCGCGCATACGATCAGTCAAAG
T
GTGACGATAATGCGCGCATACGATCAGTCAAAG
T

GTGACGATAATGCGCGCATACGATCAGTCAAAG
T

GTGACGATAATGCGCGCGTACGATCAGTCAAAG
T
GTGACGATAATGCGCGCGTACGATCAGTCAAAG
T
GTGACGATAATGCGCGCGTACGATCAGTCAAAG
T

DNASeq 
(WGS)

Reference 
Genome

RNASeq

GATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
A
GATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
A
GATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
A
GATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
A
GATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
A

GATCAGGCTAGTCAGGCACCTGATGTGTAGGAC
A

GATCAGGCTAGTCAGGTACCTGATGTGTAGGAC
A
GATCAGGCTAGTCAGGTACCTGATGTGTAGGAC
A
GATCAGGCTAGTCAGGTACCTGATGTGTAGGAC
A

A-to-I (G) C-to-U (T)

(PMID: 31996844)



Resources for RNA editing analysis



91

THANKS FOR YOUR ATTENTION!
Questions?

Next: Practical session 10 (10:45am)

Lecture 12: Data visualization 
May 15 (Monday) 9:30am  – 12pm, Room TE406/408/410 


