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Why RNA-seq
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Why RNA-seq — RNA vs DNA-seq
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The transcriptome
is dynamic.
represents only a small fraction of the genome (<5%).
is indicative of gene activity.
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Why RNA-seq — RNA vs DNA-seq

= Evaluate the functional consequences of genomic changes

= Difficult to infer from DNA sequences

= ‘Regulatory’ mutations that do not directly affects the protein sequences
= Regulation at RNA level

= Detection of alternative splicing, RNA editing, gene fusions
= Prioritize the genomic alterations that are more likely to be relevant

= Mutations in expressed genes are more likely to be functionally relative

= Allele-specific expression of the wild type or mutant allele.
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Why RNA-seq — RNA vs DNA-seq

= Understand the interactions between genes/pathways

= Gene-gene interaction could be indicative of the activity of transcription
factors that orchestrate gene expression.

= |dentify the consequence of experimental perturbation

= E.g. measuring the changes in gene expression in response to drug
treatment
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Why RNA-seq — other related technologies/platforms

RNA-seq microarray Nanostring nCounter  Single-cell/nucleus Spatial transcriptomics
(array-based) RNA-seq
Identify new RNA  Yes No No Yes No
sequences?
Resolution Non-single-cell Non-single-cell Non-single-cell Single-cell Ranges from single-cell
Can be as low as Less starting material level to small
100 cells than bulk RNA-seq spots/regions of interest.
Sensitivity High Low High Low Low
Dynamic range High Low High Low Low

Sample types

#
transcripts/genes

Output

Fresh, Fresh-
frozen, FFPE

Whole
transcriptome

Characterizes the
sequences and
measures the
average gene
expression of cell
populations.

Fresh, Fresh-
frozen, FFPE

Thousands to
50,000

Measures the
average gene
expression of
preselected
genes of cell
populations.

Fresh, Fresh-frozen,
FFPE

Up to 800

Measures the average
gene expression of
preselected genes of
cell populations.

Fresh, Fresh-frozen
(compromised
performance)

Whole transcriptome

Measures the gene
expression of
individual cells.

Fresh, Fresh-frozen,
FFPE

Targeted or whole
transcriptome

Quantify the gene
expression within the
spatial context of
tissues. Usually
integrated with scRNA-
seq analysis.




Challenges
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Challenges

Compared to DNA, RNAs
= Are more fragile
= Have tissue-specificity

= Vary in orders of magnitudes in quantity

Sample — quality and quantity of samples (purity, clinical sample)

Types of RNA (rRNA, miRNA) should be removed or processed
separately

Technical bias in mapping and quantification due to degradation.

Specific gene structure can be challenging (e.g. large intron)
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Study design — Goal of study

= Characterization of the gene expression pattern
= Differential gene expression across samples
= |dentification of novel transcripts
= Alternative splicing analysis
= Detection of gene fusion events
= Explore the functional consequences of structural variants

= Discovery or validation of mutation
= Allele-specific expression analysis

= |dentification of RNA editing
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Study design — Generic pipeline of RNA-seq studies
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Namjoshi SV, Raab-Graham KF. Front Mol Neurosci 2017;10:45.12



Study design — Experimental strategy

= General best practices for RNA-seq experiments
= Goal-driven experimental variables
= RNA Quality considerations
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General best practices for RNA-Seq

= Use of replicates
= |Importance of batching, randomization during processing
= RNA-sequencing best practices (short read)
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Replicates

Experimental replicates can be performed as technical replicates or biological replicates.

TECHNICAL BIOLOGICAL

AN

Image credit: Klaus B., EMBO | (2015) 34: 2727-2730

» Technical replicates: use the same biological sample to repeat the technical or experimental
steps in order to accurately measure technical variation and remove it during analysis.

« Biological replicates use different biological samples of the same condition to measure the
biological variation between samples.

=  What is the difference between technical, biological replicates?
=  For RNA-seq, technical replicates are not generally necessary
= Biological replicates are essential; 6-12 biological replicates generally recommended

https://hbctraining.github.io/Intro-to-rnaseg-hpc-salmon/lessons/experimental_planning_considerations.html#:~:text=Technical%20replicates%3A%20use%20the%20same,the%20biological%20variation%20between%20samples.
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Batch effects

- More likely to impact RNA-seq than DNA sequencing
- When, where, method, reagents

- Were all study samples:

Extracted on the same day?
Libraries prepared on the same day?

Was the same method used for extraction, library prep, sequencing, at the same facility?
Was all sequencing performed on the same run?

If any of the answers are “no”, then you have batches....

- Batch effects can sometimes be addressed during analysis, but better to address during experimental design

—_—

Are the differences in expression observed in the data
ACA)AA opa due to biological differences in your treatment groups?
a0 gAl Or due to processing variables between batches of
samples?

Rep:1 Rep:2 Rep:1 Rep:2
o @ EH 0°0) (000
o/ \2 0 00,

Principal Component 2

B
(g
> D

—

[ Batch: 3 ]I Batch: 2 l I Batch: 1 ]

I Group: 3 } [ Group: 2 I [ Group: 1 I

Rep:1 Rep:2

<
D>

Principal Component 1

Image credit: Hicks SC, et al., bioRxiv (2015)

https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon/lessons/experimental_planning_considerations.html#:~:text=Technical%20replicates %3A%20use %20the%20same,the%20biological %20variation%20between%20samples.
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Best practices for batches

Confounding Balanced
Bl B2 Bl||B2||B3
AAA BBB AB AB AB = Avoid confounding your experiment by batch
OO0 000 OO OO0 OO - Reduce processing variables between treatment groups
| | | | | | | | | | | | (A, B at Ieft)
RNA, RNA_ When batches are unavoidable, split biological replicates
| e.Xt.r aCt]'o,n . . elxtrlaclt|oln | across batches
Library Prep Library Prep - Track batch metadata for downstream analysis
VoYY Vv AR
OO0 OO0 OO OO OO
S S S L
L1 L2 L1 L2 || L3
\ R M - *77 A *,,,
e e &
Sequencing Sequencing
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OO0 OO0 OO OO OO
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RNA-seq best practices (short read)

- Paired End (PE) sequencing generally preferable to Single End (SE) sequencing
= Improved mappability
= Read pairs more likely to span exons
- Stranded RNA-seq preferable to non-stranded
= Better resolution for reads from overlapping genes transcribed on opposite strands
= Better resolution for bi-directional transcription

- Both strategies improve the accuracy of gene expression quantification

. . . . Reads fi h d
Single-end sequencing Paired-end sequencing are distinguished
5, exon exon 3UTR exon exon 3 UTR 3, ¢
e o PRRRPP
o o Y o 1
- P - R e s SRR |
i ——me— e - s
L == R
adapted from: Zhernakova et al., PLoS Genet. 2013 Jun; 9(6) it
q21.31  q2l. .33 q23.1 q23.3 q24.12 q24.22 q24.31 q24.33

http://www.takara.co.kr/file/manual/634836.html
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Goal-driven experimental design variables

Sequencing depth
RNA Library prep methods
Sequencing platform
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Sequencing depth

= Highly dependent on goals

= Why it's difficult to answer the question “How much does RNA-seq cost”?

Analysis Goal Reads
Recommended

Differential expression of highly expressed genes
Differential expression across transcriptome, isoform level
Alternative splicing

Assembly of new transcripts
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5-25 million
30-60 million
80-100 million
100-200 million
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RNA Library prep methods

Total RNA is 80-95% rRNA (ribosomal RNA)
In order to focus on the transcriptome, we have to reduce
the rRNA in total RNA during Library prep

Two methods:
Poly A selection

Legend

Ribosomal depletion NS genont\icD:;:A
Immature
Selection depends on goals, RNA quality —=_. mature RNA
Tissue non-coding RNA

*0ex°  ribosomal RNA

!

——\_ N\ \L

TNt et R

https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1004393.g004
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RNA Library prep methods

" ponA (mRNA) selection
Selects for only mRNAs with a polyA tail
= Enriched for protein coding only reads
= Very little pre-mRNA, lincRNA, etc.
= Doesn’t work well with low quality, degraded RNA (bias)
= Bottom line: more efficient if all you're interested in is coding
RNA, and your RNA is very high quality
= Ribosomal depletion
= Removes rRNA with probes
= Leaves everything else to be sequenced
= Diverse RNA sequences
= Not as enriched for exonic reads
= Effective for degraded RNA
= Bottom line: good for large studies where RNA quality might be
variable; or non-coding RNAs are of interest

https://www.neb.com/products/e6310-nebnext-rrna-depletion-kit-human-mouse-rat#Product%20Information
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Percent of Reads (%)

B Ribosomal
M Intergenic
| Intronic

M Exonic

0.91 1.00

100 -
N .
80 8.65

untreated polyA Ribosgmal
selectio depletion
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Sequencing platform

Short-read vs Long-read
= Short-read is by far the most common approach for RNA-seq, with broad analytical utility
= RNA-seq can also be performed using long-read technologies (PacBio, Oxford Nanopore)

. Long -read RNA-seq often called “Iso-Seq”
Not geared towards Differential Expression
= Entire transcripts spanned by single reads
= Isoform Discovery, resolution of complex

splicing/fusion events - - —
. Dls?mblguates Isoforms that short reads P P —
can’t resolve ) - =%
= Requires VERY high quality RNA woere | L A
- — — —
Short-Read - - - - S
Sequencing - ~3
(RNA-Seq) - - e il L
* Insufficient Connectivity
+ Splice Isoform Uncertainty z;a::;pnac::r‘\g
Long-Read 5’ == se— — — —
Sequencing P T o — :
(Iso-Seq) E=—=mES — —
}
m) No Assembly Required
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Method.pdf



RNA Quality considerations

RNA MUCH more susceptible to degradation than DNA
= During processing, handling
= Depending on storage temperature
= Freeze/Thaw cycles
How intact or degraded your RNA is can impact feasibility of

Experiments that can be performed
Reliability of analysis

m) NATIONAL CANCER INSTITUTE
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RNA Quality considerations

= Quality of RNA should be assessed, reported after extraction, before library prep
= Often reported as the “RIN”, or RNA Integrity Number

= Quality score from 1-10

= Virtually all FFPE RNA will be “Low” quality

A N\
Intact RNA: RIN 10 RNA Limitations
Quality
High 8-10
AN Medium 4-7 No long-read, no polyA selection
Low 1-3  Nolong-read, no polyA selection, RNA-seq may be
o piloted to assess suitability
20 Strongly Degraded
:: RNA: RIN 3
“ o5
0.0
19 2 29 3 39 44 49 54 59 64 69
\_ Time (seconds) )

Fiqure 6

https://blog.genohub.com/2017/12/24/rin-numbers-how-theyre-calculated-what-they-mean-and-why-theyre-important/
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RNA-seq analysis pipeline
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Sequencing

A) Whole Genome Sequencing (WGS)

Genomic DNA —
— Adaptor — PCR pr— — [
Fragmentation — ligation — amplification” . e — — Sequencing
— — — — — — > [ 8]
B) RNA Sequencing (RNAseq)
Raw reads
Total RNA
Adaptor —
’\/\{\/\_ mRNA Fragmentation ligation -
/\/ enrichment & - & — Sequencing

A~ —
—_— — N —_—
w or 0 VR S N _ PCR
rRNA depletion AN~ synthesis —  amplification *

/\/\W S

>

ol

Raw reads
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Quality Control (QC) of Raw Reads

= FastQC
- Good example

RFastQC Report

Summary
@ basi @ Basic statistics
& Persequence quality scores Pilo type Conventional base calls
r\) P Encoding Illumina 1.5
Total Sequonces 250000
@ Per sequence GC content Sequence length 40
@ Per base N content soc 43
@ S Distributi
@ seauence Duplication Levels
@ Ovemeprosented sequences (7] Per base sequence quality
@) Kmer Content is Qualty scores across all bases (lumina 1.5 encoding)
36
3
2
30
28
26
24
2
20
1
16
1
2
10
s
s
B
2
0

12345678910 12 14 16 18 20 22 24 26 28
Position in read (bp)
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Bad example

RFastQC Report

Summary
@ Basic Stats @ Basic Statistics
@mm_oum_@m File type Conventional base calls
() Per - ntent Encoding Illumina 1.5
P Total Sequonces 395200
(€1 Perbase GC content Filtered Soquences 0
() Per sequence GC content Sequence length 40
ce o

@ Perbase N content

@ seauence Length Distribution
@ sequence Duplication Lovels
@ overrepresented sequences

@ Kmer Content

Bad quality at the 3’-end

Q Per base sequence quality
Quality scores across all bases (ilumina 15 encoding)

3¢
ST IITI T I LT 0 CTTTTTTITTTITTT]

30 HH

123456768910 12 14 16 18 20 22 24 26 28 30 3 34 36 38 40
Position in read (bp]
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Splice-aware aligners

- Tophat/Tophat2 Timeline of NGS read aligners
- STAR Image from Nuno Fonseca, HTS Mappers et T
- M a p S p I I Ce Subread?‘s?l%‘;%%ig‘?;g :
SRmapper o
= SpliceMap e i*———STAR
Cited: 30,158
Cpoar\slggrr:llaf: . o ContextMap 2
P o8
STAR (Spliced Transcripts Alignment to a Reference) -
Sgs\%zie‘[i%?"ﬁ: BS-Seeker2- o
= Seed searching « Clustering, stitching, and sorting hﬁi%%f ke
Genomehr@lé‘é‘; * mrsFAST o mrsFAST-Ultra

stitched read PertM o
RNA-Mal X-Mat
BSMAD + et~ 7 “Splazers

Longest sequence read - E GfEeS o e MooRaeS e o e Razers3

exactly matching seed1] seed2 i dBBW\A e « BWASW

loudBurst
reference t ProbeMaich o « “WHAM
(Maximal N AN TopHat «

M: ble Prefi ,/ / Eowta o « Bowtie2 ks
lappable Prefixes / AN AN seed1] seed2 MOM o
MMPs)sy / / N N 3 * SIdPASS . PR PASS-bis
- (€18 AG —_— N QPALMA o e
VAERVARN AN SGCS o

MAQ «
il s LA S S ek Tophat/Tophat2

SOAP « + SOAP2 SOAPSplice

reference genome :i"’:‘” :i‘t’;epmr s o ELAND 2T i i C|ted 12,727/ 1 2,346

Al
Exonerate o
Mummer 3 o
Blat o
SSAHA o

) I I I I I I I I I T I I I I I 1
PMID: 23104586 2001 2003 2005 2007 2009 2011 2013 2015

Years
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Benchmark of RNA-seq aligners

Accuracy performance

100 STAR is the winner in terms of
2 performance and runtime. The only issue is
@ 75 . . .
g Measurement memory intensive. HPC is needed.
2 m Aligned correctly
5 50 = Aligned ambiguously
< M Aligned incorrectly
§ 25 Unaligned
& I I Runtime performance on human dataset
o [} [ L) L) L L L [ [ L LI L :l:omj“e T3
dtjdt dtjdtjdt d tjdtjdt d dtdtdtdt
[\ o [N s §
ggg;;ggggggggg B - -
O U) — o 1 «
19T T gl5l° £ 8 ; | STAR STAR STAR .
& 2 3 : i
— © — — b ¢ 50 I 1,000 +4 l
50
| ill A ...lill oY ambEe
d: default parameters SIS ;f‘@&ﬁ;@%@& SN ;‘X;‘;(}\\‘:&»&e«&g‘ ‘\:\gc,vz«i‘;%;m e%@ /ol
[y (o bo

t: tunned parameters
PMID: 27941783
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RNA-seq analysis pipeline

- No standard pipeline, many tool combinations, reference based

1. Alignment

2. Quantification
and
normalization

3. Downstream
analysis
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RNA-seq data analysis workflow

(1) Raw gene expression quantification

Trimmin

| BBMap-BBDuk | | Cutadapt Trimmomatic Ballgown
' ‘ ‘ ‘ baySeq
Alignment against Hybrid alignment ~ Alignment against Pseudoalignment
genome (genome + transcriptome Cuffdiff
transcriptome)
[owe |[ s [ wee | [row | [USiA] [BoME | am | aven | v oesuz
M Bl ’
3’ {} A 4 EBseq
2 B i “ o) edgeR
43
edgeR
V V {} GLM**
i | limma
R e ([ | e |
c
s i
."g RLE Coverage 1 Eﬁ;’::::d limma voom
® |
E ™M M NOISeq™
2
SAMseq

(2) Differential gene expression

Corchete et al. Sci Reports, 2020.
https://doi.org/10.1038/s41598-020-76881-x
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RNA-seq analysis pipeline
TCGA RNA-seq pipeline as an example

FPKM = C,* 1e’ N = number of protein coding genes
AI H t Tl C, = count of reads aligned to gene g
Ig n men (‘-‘CZ)L"’ L: = union length of exons of gene g
y Augment and PKM- __ Gre G = number of protein coding genes on
Submitted Files GenecEXpreSSIon » Normalize Counts FRRNAIQ = e autosomes :
ounts GDC Custom Cqtl(0.75) = count of lreads aligned to gene
Convert to FASTQ TPM = &1/ sraventieors
BAM > Biobambam 2(C,*1¢ /L)
Aligned
/ Transcriptome
BAM Stranded + agen .
Unstranded Quantification
: : / HT-Seq/RSEM sy and
S%'ectz iﬁg,c,m" Aligned ] A » \_ FPKM, FPKM-UQ,
+ e : . H H
FASTQ m R onment 70 Sereric Used previously TPM normalization
STAR 2 TwoPass
Aligned L _ i
Chimeric o | Transcript Fusion Transcript
BAM Arriba Fusion
Available on . .
GDC Data o Fusion Detection
Portal e
Sres _ | Transcript Fusion Transcript
"| STAR-Fusion Fusion

ICGC has a very similar pipeline.
https://docs.gdc.cancer.gov/Data/Bioinformatics Pipelines/Expression mRNA Pipeline/
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https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/

RPKM, FPKM, FPKM-UQ and TPM

-  RPKM (single-end read)
Reads per Kilobase of transcript per Million mapped

-  FPKM (pair-end reads)
Fragments per Kilobase of transcript per Million mapped

. EzonMappedReads * 10°
- FPKM_U Q (pal r_end readS) ASHI= TotalMappedf{iads *x ExonLength
Upper quartile normalized FPKM " BoonMappedFragments + 10°
FPEM = Total MappedFragments x EzonLength
. Ni/Li % 10°
»TPM (pair-end reads) TP = o Ni/IL + Na/L2+ N/}
Transcrl pts per M | ”lon mapped Ni is the number of reads compared to the i-th exon; Li is the length of

the i-th exon; sum(N1/L1+N2/L2+......+Nn/Ln) is the sum of the values of
all (n) exons after normalization by length.
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QC After Alignment

%mapped reads/uniquely mapped reads (aka, sequencing depth)

Gene body coverage (e.g. 5’-to-3’ bias)

Quality distribution Gene body coverage

Average insert size
PCR duplicates

Distribution across exon/intron/intergenic regions ‘| |

Strand-specificity

Sequencing saturation

RSeQC and PMID: 22743226
RNA-SeQC2 PMID: 33677499
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QC After Alignment

Mapping rate to the Human Genome (hg19): An example

100.00%
9000%
80.00%
70.00%
60.00%
50.00% Samplel, 53.12%
40.00% Sample2, 58.71%
3000%
2000%

10.00%

0.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

= N =B mUlti e d
= e SISERES Samplel and sample2 need to be

removed for further analysis.
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Visualization

= Plot types
= Pileup plot
= Sashimi plot
= Tools
= Best overall: Integrative Genomics Viewer/IGV

= Alternative: samtools tview (for quick check), Tablet (support more format, high-
quality graphs), Integrated Genome Browser/|IGB

= More information:

= https://github.com/cmdcolin/awesome-genome-visualization

= http://jermdemo.blogspot.com/2010/08/ngs-viewers-reviewed.html

m) NATIONAL CANCER INSTITUTE
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https://software.broadinstitute.org/software/igv/
http://www.htslib.org/doc/samtools-tview.html
https://ics.hutton.ac.uk/tablet/
https://www.bioviz.org/
https://github.com/cmdcolin/awesome-genome-visualization
http://jermdemo.blogspot.com/2010/08/ngs-viewers-reviewed.html

Visualization — IGV

|H|mm (GRCh38/hg38)

|Go“1 » 0O x QA |

B &

chr2:29223141-29223587

E

~

chr2:42,295,292-42,295,737

Coverage

.........

Alignment

p-tee1

|
P

M. S

il

Junction s

upporting reads

i
i
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Visualization — IGV

= Sashimi plots visualize junctions from alignments.

2 — ] X

e AN (R |

[0-15185] SC827975

906,

78:285 (545S\§cs23530

[0-7987] /-61—5015 47 151, ﬁ
\68608905 163108(1338 3132
5

1774 A AT) 520637, 7
[~ .‘ | : T I ™ /
S o S50 3#53#!29-93 1321056 38 ‘\uw

L L L )
35141960 35170701 35199442 35228183

- + + -_—
' ; ; >t ok ot —
' - — o S rame: o l—
i : i B ] 1 : chr11:35139171-35232402 (+) >
' } ' ot id: XM_005253239.4 —
. 5 ; M o —
¥ + + + + + H ot Exon number: 8 b——
E t t + t —+ H + Amino acid coding number: 324 -
' + + + t + chr11:35208105-35208206 ia—
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bl 10459505

1049611 0SSR l6eS) SRSl ledsatsl 1469061 1eASTL
AT TOBSCCACEAMTSCEACTCATEECOCTC T TCATACC TS AOSCESTANGAAAAATSSOACAATS

Visualization — Samtools

= Samtools tview

samtools tview —p chr:pos —d H alignment.bam genome.fasta

chr19:10489805

10489811 10489821 10489831 1489841 1€4839851 1489361 1e483871
TGTCAGCATTGGGGCCACCAAGTGCCACTCATCCCGCTCTGEITCATACCTSCAAGCCCGTAAGAAAAATGGGGACAATS
P P PP PP P TP

< < < < < < < <

2 I I I I N R I I I I I I I I I I I I I I I I NI I I I I I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIINIIIY
> > 2 2> 2 > > 2>

IO 0000000 0 0 00000 0 X0 5 X X XXX XX X XN NNINNNIRIINNIINIRNIDINIINIRIRNNNNDNINIININNIINNNND
CLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL444LLLLLL444444<
PR
LLLLLLLLLLLLLLLLLLLLLLLLLLALLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLceldegcccessccccc
< < << €L L < €L LLLLLLLLLLeegecccce < <<
K€L CCLLLLLLLLLCLLCLL(CCCCCLCLL¢CKC
D333 3333333333 33333330 33335333 333333333333 033 3333333033333 2 3333333333350
D222232232223330 233233333 233333323333333333333II33III33I3IIIII332IIIIIIIXIIIIIFD
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Quantification

= Counting mapped reads as a measure of expression

» Reads can be summarized and aggregated over any biologically
meaningful features (e.g. genes, transcripts, exons, etc.)

= Intersection on gene models

m) NATIONAL CANCER INSTITUTE
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Quantification — artifacts and biases

= GC bias
= Samples processed in the same batch with the same protocol usually
would show similar GC bias. Then the GC bias correction can be skipped
for comparisons across samples.
= Can be examined computationally using tools like FastQC.
= |f significant difference in GC content exist, can be corrected using tools
like EDASeq or alpine.

Estimated
Fragment Uniform model predicts '~ <M
Sequence bias ;.':::::::::::_—i— 4 3R
ifi H True
(PCR ampllflcatlon) FPKM  Under uniform Missing fragments 2 8
s ¥ coverage from amplification bias B T . i
Q e —_=:nnniz— Mean High  Mean
= - = e mmm GC GC GC
B Bias model predicts l
Q 4 Ll I — 2
8 Mean High Mean Mean High Mean = —
o GC GC GC GC GC GC v
Ko} oy — g 4
Fragment Mean High Mean
GC Cyo GC GC GC

BID) NATIONAL cANCER INSTITUTE Love, M., et. al. Nat Biotechnol 34, 12871291 (2016).
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https://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/alpine.html

Quantification — artifacts and biases

= Random hexamer bias

= a bias in the nucleotide composition at the

start of sequencing reads

= no significant pattern in DNA and Chip-seq
= some tools (e.g. Cufflinks) would correct
the bias. Usually doesn’t need correction

separately.

m) NATIONAL CANCER INSTITUTE

Read start bias

(rand
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Quantification — artifacts and biases

= Positional bias: 5’-to-3’ bias
: : Positional bi
= Mostly due to the poly-A selection and partial (gzgrzgzﬁoﬁ)s

degradation of RNA

= Correlated with RIN score. Fn

0}

= If the bias is similar across samples, usually doesn’t &
need to make adjustment. = > 3

- Some mathematical models are developed to rasiion

neutralize the effect of positional bias.

= Alternatively, RIN scores can be used as a
covariate.

BID) NATIONAL CANCER INSTITUTE Love, M., et. al. Nat Biotechnol 34, 12871291 (2016). 43



Quantification — artifacts and biases

= PCR duplicates

Most RNA-seq pipelines do NOT include computational deduplication.

De-duplication computationally is carried out by sequence of comparison or
aligned coordinates.

Short transcripts and very highly expressed transcripts (common in some
species) will contribute the last majority of biological ‘duplicates’.

The fraction of identified duplicates is correlated with the number of aligned
reads.

Use UMIs in case of very low input sample or very deep sequencing library.

More information: https://www.biostars.org/p/55648/

= Mapping errors
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https://www.biostars.org/p/55648/

Quantification — artifacts and biases

= Ambiguous alignment Union
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Quantification — artifacts and biases

= Sequencing depth

= Gene length bias

High
3 l—  + S ==
Short transcript Long transcript
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Quantification — Common software

Methods Quantification Output Ambiguous reads Confidence Notes
features level
HTSeq Gene Counts Ignore NA
STAR Gene Counts Ignore NA
geneCounts
Cufflinks Transcript RPKM Split equally, rescue NA Assembly
featureCounts Gene Counts Ignore, count all, split NA
equally
RSEM Gene, transcript, Counts, Expectation-Maximization = 95% confidence
Exon RPKM, TPM (EM) intervals
StringTie Transcript FPKM, TPM Flow network NA Assembly
eXpress Gene, transcript Counts, EM 95% confidence
FPKM, TPM intervals
Kallisto Transcript TPM EM Bootstrap Pseudoalignment’
Salmon Transcript Counts, TPM EM Bootstrap Pseudoalignment’
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*Pseudoalignment: Reads are mapped to a reference transcriptome, and

are judged on compatibility with transcripts, not aligned.
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https://htseq.readthedocs.io/en/master/
https://physiology.med.cornell.edu/faculty/skrabanek/lab/angsd/lecture_notes/STARmanual.pdf
https://physiology.med.cornell.edu/faculty/skrabanek/lab/angsd/lecture_notes/STARmanual.pdf
http://cole-trapnell-lab.github.io/cufflinks/
https://subread.sourceforge.net/featureCounts.html
https://github.com/deweylab/RSEM
https://ccb.jhu.edu/software/stringtie/
https://pachterlab.github.io/eXpress/overview.html
https://pachterlab.github.io/kallisto/about
https://combine-lab.github.io/salmon/

Resources

= NCI BTEP Bioinformatics for beginners:
https://btep.ccr.cancer.gov/docs/b4b/
- UC Davis Bioinformatics workshop RNA-seq analysis: https://ucdavis-

bioinformatics-training.qgithub.io/2021-September-RNA-Seqg-Analysis/
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https://btep.ccr.cancer.gov/docs/b4b/
https://ucdavis-bioinformatics-training.github.io/2021-September-RNA-Seq-Analysis/
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