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Session overview

▪ Why RNA-seq

▪ Challenges

▪ Study design

▪ Goal of study

▪ Experimental strategy
▪ RNA-seq analysis pipeline

▪ Alignment and Quality Control (QC)

▪ Visualization

▪ Quantification
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Why RNA-seq
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Why RNA-seq – RNA vs DNA-seq

https://nbisweden.github.io/workshop-ngsintro/2302/

The transcriptome 
is dynamic.
represents only a small fraction of the genome (<5%).
is indicative of gene activity.
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Why RNA-seq – RNA vs DNA-seq

▪ Evaluate the functional consequences of genomic changes
▪ Difficult to infer from DNA sequences

▪ ‘Regulatory’ mutations that do not directly affects the protein sequences

▪ Regulation at RNA level 
▪ Detection of alternative splicing, RNA editing, gene fusions

▪ Prioritize the genomic alterations that are more likely to be relevant
▪ Mutations in expressed genes are more likely to be functionally relative

▪ Allele-specific expression of the wild type or mutant allele.
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Why RNA-seq – RNA vs DNA-seq

▪ Understand the interactions between genes/pathways
▪ Gene-gene interaction could be indicative of the activity of transcription 

factors that orchestrate gene expression.

▪ Identify the consequence of experimental perturbation
▪ E.g. measuring the changes in gene expression in response to drug 

treatment



Why RNA-seq – other related technologies/platforms
RNA-seq microarray Nanostring nCounter 

(array-based)
Single-cell/nucleus 
RNA-seq

Spatial transcriptomics

Identify new RNA 
sequences?

Yes No No Yes No

Resolution Non-single-cell
Can be as low as 
100 cells

Non-single-cell Non-single-cell
Less starting material 
than bulk RNA-seq

Single-cell Ranges from single-cell 
level to small 
spots/regions of interest.

Sensitivity High Low High Low Low

Dynamic range High Low High Low Low

Sample types Fresh, Fresh-
frozen, FFPE

Fresh, Fresh-
frozen, FFPE

Fresh, Fresh-frozen, 
FFPE

Fresh, Fresh-frozen 
(compromised 
performance)

Fresh, Fresh-frozen, 
FFPE

# 
transcripts/genes

Whole 
transcriptome

Thousands to 
50,000

Up to 800 Whole transcriptome Targeted or whole 
transcriptome

Output Characterizes the 
sequences and 
measures the 
average gene 
expression of cell 
populations.

Measures the 
average gene 
expression of 
preselected 
genes of cell 
populations.

Measures the average 
gene expression of 
preselected genes of 
cell populations.

Measures the gene 
expression of 
individual cells.

Quantify the gene 
expression within the 
spatial context of 
tissues. Usually 
integrated with scRNA-
seq analysis.
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Challenges



9

Challenges

▪ Compared to DNA, RNAs
▪ Are more fragile

▪ Have tissue-specificity

▪ Vary in orders of magnitudes in quantity

▪ Sample – quality and quantity of samples (purity, clinical sample)
▪ Types of RNA (rRNA, miRNA) should be removed or processed 

separately
▪ Technical bias in mapping and quantification due to degradation.
▪ Specific gene structure can be challenging (e.g. large intron) 
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Study design
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Study design – Goal of study

▪ Characterization of the gene expression pattern
▪ Differential gene expression across samples
▪ Identification of novel transcripts
▪ Alternative splicing analysis
▪ Detection of gene fusion events
▪ Explore the functional consequences of structural variants

▪ Discovery or validation of mutation
▪ Allele-specific expression analysis

▪ Identification of RNA editing
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Study design – Generic pipeline of RNA-seq studies

Namjoshi SV, Raab-Graham KF. Front Mol Neurosci 2017;10:45.
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Study design – Experimental strategy

▪ General best practices for RNA-seq experiments
▪ Goal-driven experimental variables
▪ RNA Quality considerations
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General best practices for RNA-Seq

▪ Use of replicates
▪ Importance of batching, randomization during processing
▪ RNA-sequencing best practices (short read)
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Replicates

▪ What is the difference between technical, biological replicates?
▪ For RNA-seq, technical replicates are not generally necessary
▪ Biological replicates are essential; 6-12 biological replicates generally recommended

https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon/lessons/experimental_planning_considerations.html#:~:text=Technical%20replicates%3A%20use%20the%20same,the%20biological%20variation%20between%20samples.
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Batch effects
▪ More likely to impact RNA-seq than DNA sequencing
▪ When, where, method, reagents
▪ Were all study samples:

▪ Extracted on the same day?
▪ Libraries prepared on the same day?
▪ Was the same method used for extraction, library prep, sequencing, at the same facility?
▪ Was all sequencing performed on the same run?
▪ If any of the answers are “no”, then you have batches….

▪ Batch effects can sometimes be addressed during analysis, but better to address during experimental design

Are the differences in expression observed in the data 
due to biological differences in your treatment groups? 
Or due to processing variables between batches of 
samples?

https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon/lessons/experimental_planning_considerations.html#:~:text=Technical%20replicates%3A%20use%20the%20same,the%20biological%20variation%20between%20samples.
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Best practices for batches

▪ Avoid confounding your experiment by batch
▪ Reduce processing variables between treatment groups 

(A, B at left)
▪ When batches are unavoidable, split biological replicates 

across batches
▪ Track batch metadata for downstream analysis
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▪ Paired End (PE) sequencing generally preferable to Single End (SE) sequencing
▪ Improved mappability
▪ Read pairs more likely to span exons

▪ Stranded RNA-seq preferable to non-stranded
▪ Better resolution for reads from overlapping genes transcribed on opposite strands
▪ Better resolution for bi-directional transcription

▪ Both strategies improve the accuracy of gene expression quantification

http://www.takara.co.kr/file/manual/634836.html

RNA-seq best practices (short read)
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Goal-driven experimental design variables

▪ Sequencing depth
▪ RNA Library prep methods
▪ Sequencing platform
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Sequencing depth

▪ Highly dependent on goals
▪ Why it’s difficult to answer the question “How much does RNA-seq cost”?
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RNA Library prep methods

▪ Total RNA is 80-95% rRNA (ribosomal RNA)
▪ In order to focus on the transcriptome, we have to reduce 

the rRNA in total RNA during Library prep
▪ Two methods:

▪ Poly A selection
▪ Ribosomal depletion
▪ Selection depends on goals, RNA quality

Total RNA

https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1004393.g004
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RNA Library prep methods
▪ polyA (mRNA) selection

▪ Selects for only mRNAs with a polyA tail
▪ Enriched for protein coding only reads
▪ Very little pre-mRNA, lincRNA, etc.
▪ Doesn’t work well with low quality, degraded RNA (bias)
▪ Bottom line: more efficient if all you’re interested in is coding 

RNA, and your RNA is very high quality
▪ Ribosomal depletion

▪ Removes rRNA with probes
▪ Leaves everything else to be sequenced
▪ Diverse RNA sequences
▪ Not as enriched for exonic reads
▪ Effective for degraded RNA
▪ Bottom line: good for large studies where RNA quality might be 

variable; or non-coding RNAs are of interest

untreated polyA 
selectio
n

Ribosomal 
depletion

https://www.neb.com/products/e6310-nebnext-rrna-depletion-kit-human-mouse-rat#Product%20Information
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Sequencing platform
▪ Short-read vs Long-read

▪ Short-read is by far the most common approach for RNA-seq, with broad analytical utility
▪ RNA-seq can also be performed using long-read technologies (PacBio, Oxford Nanopore)

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.pacb.com/wp-content/uploads/2018-10-NA-UGM-Iso-Seq-
Method.pdf

▪ Long-read RNA-seq often called “Iso-Seq”
▪ Not geared towards Differential Expression
▪ Entire transcripts spanned by single reads
▪ Isoform Discovery, resolution of complex 

splicing/fusion events
▪ Disambiguates Isoforms that short reads 

can’t resolve
▪ Requires VERY high quality RNA
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RNA Quality considerations

▪ RNA MUCH more susceptible to degradation than DNA
▪ During processing, handling
▪ Depending on storage temperature
▪ Freeze/Thaw cycles

▪ How intact or degraded your RNA is can impact feasibility of
▪ Experiments that can be performed
▪ Reliability of analysis



25

RNA Quality considerations

https://blog.genohub.com/2017/12/24/rin-numbers-how-theyre-calculated-what-they-mean-and-why-theyre-important/

▪ Quality of RNA should be assessed, reported after extraction, before library prep
▪ Often reported as the “RIN”, or RNA Integrity Number
▪ Quality score from 1-10
▪ Virtually all FFPE RNA will be “Low” quality
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RNA-seq analysis pipeline
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Sequencing

Raw reads

Raw reads
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Quality Control (QC) of Raw Reads

▪ FastQC 
▪ Good example ▪ Bad example

Bad quality at the 3’-end



29

Splice-aware aligners
▪ Tophat/Tophat2
▪ STAR
▪ MapSplice
▪ SpliceMap STAR

Tophat/Tophat2
Cited: 12,727/12,346

Image from Nuno Fonseca, HTS Mappers

Timeline of NGS read aligners

PMID: 23104886

Cited: 30,158
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Benchmark of RNA-seq aligners

Runtime performance on human dataset

Accuracy performance

PMID: 27941783

STAR STAR STAR

d: default parameters
t: tunned parameters

STAR is the winner in terms of 
performance and runtime. The only issue is 
memory intensive. HPC is needed.
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RNA-seq analysis pipeline

Corchete et al. Sci Reports, 2020. 
https://doi.org/10.1038/s41598-020-76881-x 

▪ No standard pipeline, many tool combinations, reference based 

1. Alignment
2. Quantification 

and 
normalization

3. Downstream 
analysis
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RNA-seq analysis pipeline
TCGA RNA-seq pipeline as an example

HT-Seq/RSEM

Used previously

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
ICGC has a very similar pipeline. 

Alignment

Quantification 
and 
normalization

Fusion Detection

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
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RPKM, FPKM, FPKM-UQ and TPM

▪ RPKM (single-end read)
Reads per Kilobase of transcript per Million mapped

▪ FPKM (pair-end reads)
Fragments per Kilobase of transcript per Million mapped

▪ FPKM-UQ (pair-end reads)
Upper quartile normalized FPKM 

▪ TPM (pair-end reads)
Transcripts per Million mapped
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QC After Alignment 
▪ %mapped reads/uniquely mapped reads (aka, sequencing depth)
▪ Gene body coverage (e.g. 5’-to-3’ bias)
▪ Quality distribution
▪ Average insert size
▪ PCR duplicates
▪ Distribution across exon/intron/intergenic regions
▪ Strand-specificity
▪ Sequencing saturation

RSeQC and 
RNA-SeQC2

PMID: 22743226
PMID: 33677499

Gene body coverage

bad

good



35

Mapping rate to the Human Genome (hg19): An example

Sample1, 53.12%
Sample2, 58.71%

Sample1 and sample2 need to be 
removed for further analysis.

QC After Alignment 
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Visualization
▪ Plot types

▪ Pileup plot
▪ Sashimi plot

▪ Tools
▪ Best overall: Integrative Genomics Viewer/IGV
▪ Alternative: samtools tview (for quick check),  Tablet (support more format, high-

quality graphs), Integrated Genome Browser/IGB
▪ More information: 

▪ https://github.com/cmdcolin/awesome-genome-visualization
▪ http://jermdemo.blogspot.com/2010/08/ngs-viewers-reviewed.html

https://software.broadinstitute.org/software/igv/
http://www.htslib.org/doc/samtools-tview.html
https://ics.hutton.ac.uk/tablet/
https://www.bioviz.org/
https://github.com/cmdcolin/awesome-genome-visualization
http://jermdemo.blogspot.com/2010/08/ngs-viewers-reviewed.html
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Visualization – IGV

Coverage

Alignment

Junction supporting reads
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Visualization – IGV

▪ Sashimi plots visualize junctions from alignments.
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Visualization – Samtools

▪ Samtools tview

samtools tview –p chr:pos –d H alignment.bam genome.fasta
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Quantification

▪ Counting mapped reads as a measure of expression

▪ Reads can be summarized and aggregated over any biologically 
meaningful features (e.g. genes, transcripts, exons, etc.)

▪ Intersection on gene models
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Quantification – artifacts and biases

▪ GC bias
▪ Samples processed in the same batch with the same protocol usually 

would show similar GC bias. Then the GC bias correction can be skipped 
for comparisons across samples.

▪ Can be examined computationally using tools like FastQC.
▪ If significant difference in GC content exist, can be corrected using tools 

like EDASeq or alpine.

Love, M., et. al. Nat Biotechnol 34, 1287–1291 (2016). 

https://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/alpine.html
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Quantification – artifacts and biases

▪ Random hexamer bias
▪ a bias in the nucleotide composition at the 

start of sequencing reads
▪ no significant pattern in DNA and Chip-seq
▪ some tools (e.g. Cufflinks) would correct 

the bias. Usually doesn’t need correction 
separately.

Love, M., et. al. Nat Biotechnol 34, 1287–1291 (2016).
Hansen, K, et. al.  Nucleic Acids Res. 38(12): e131 (2010)
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Quantification – artifacts and biases

▪ Positional bias: 5’-to-3’ bias

▪ Mostly due to the poly-A selection and partial 
degradation of RNA

▪ Correlated with RIN score.
▪ If the bias is similar across samples, usually doesn’t 

need to make adjustment.
▪ Some mathematical models are developed to 

neutralize the effect of positional bias.
▪ Alternatively, RIN scores can be used as a 

covariate.

Love, M., et. al. Nat Biotechnol 34, 1287–1291 (2016). 
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Quantification – artifacts and biases

▪ PCR duplicates

▪ Most RNA-seq pipelines do NOT include computational deduplication.
▪ De-duplication computationally is carried out by sequence of comparison or 

aligned coordinates.
▪ Short transcripts and very highly expressed transcripts (common in some 

species) will contribute the last majority of biological ‘duplicates’. 
▪ The fraction of identified duplicates is correlated with the number of aligned 

reads.
▪ Use UMIs in case of very low input sample or very deep sequencing library.

▪ More information: https://www.biostars.org/p/55648/
▪ Mapping errors

https://www.biostars.org/p/55648/
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Quantification – artifacts and biases

▪ Ambiguous alignment 
▪ Overlapping genes

▪ Alternate splicing

https://scilifelab.github.io/courses/ngsintro/1905/slides/rnaseq/presentation.html#33
Trapnell, C. et. al. Nat Biotechnol 28, 511–515 (2010). 
https://doi.org/10.1038/nbt.1621

https://scilifelab.github.io/courses/ngsintro/1905/slides/rnaseq/presentation.html
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Quantification – artifacts and biases

▪ Sequencing depth

▪ Gene length bias



47

Quantification – Common software
Methods Quantification 

features
Output Ambiguous reads Confidence 

level
Notes

HTSeq Gene Counts Ignore NA

STAR 
geneCounts

Gene Counts Ignore NA

Cufflinks Transcript RPKM Split equally, rescue NA Assembly

featureCounts Gene Counts Ignore, count all, split 
equally

NA

RSEM Gene, transcript, 
Exon

Counts, 
RPKM, TPM

Expectation-Maximization 
(EM)

95% confidence 
intervals

StringTie Transcript FPKM, TPM Flow network NA Assembly

eXpress Gene, transcript Counts, 
FPKM, TPM

EM 95% confidence 
intervals

Kallisto Transcript TPM EM Bootstrap Pseudoalignment*

Salmon Transcript Counts, TPM EM Bootstrap Pseudoalignment*

*Pseudoalignment: Reads are mapped to a reference transcriptome, and 
are judged on compatibility with transcripts, not aligned.

https://htseq.readthedocs.io/en/master/
https://physiology.med.cornell.edu/faculty/skrabanek/lab/angsd/lecture_notes/STARmanual.pdf
https://physiology.med.cornell.edu/faculty/skrabanek/lab/angsd/lecture_notes/STARmanual.pdf
http://cole-trapnell-lab.github.io/cufflinks/
https://subread.sourceforge.net/featureCounts.html
https://github.com/deweylab/RSEM
https://ccb.jhu.edu/software/stringtie/
https://pachterlab.github.io/eXpress/overview.html
https://pachterlab.github.io/kallisto/about
https://combine-lab.github.io/salmon/


48

Resources

▪ NCI BTEP Bioinformatics for beginners: 
https://btep.ccr.cancer.gov/docs/b4b/

▪ UC Davis Bioinformatics workshop RNA-seq analysis: https://ucdavis-
bioinformatics-training.github.io/2021-September-RNA-Seq-Analysis/

https://btep.ccr.cancer.gov/docs/b4b/
https://ucdavis-bioinformatics-training.github.io/2021-September-RNA-Seq-Analysis/
https://ucdavis-bioinformatics-training.github.io/2021-September-RNA-Seq-Analysis/


www.cancer.gov                 
www.cancer.gov/espanol


