

The Dermatlas Project:

Cross-species oncogenomics of melanoma and other malignancies to define disease drivers

David Adams, Experimental Cancer Genetics

www.dermatlasproject.org

Skin structures

70 tumour types

Benign, Intermediate, Malignant

Other

Cutaneous myxoma, Non neural dermal granular cell tumour, Superficial acral fibromyxoma, Extramammary Paget disease

Medical Research Council

Melanocytes Pigmented spindle cell nevus, Conjunctival nevi

EPIDERMIS

 \rightarrow 50 tumours/germline pairs per type exome/transcriptome

 \rightarrow Capture images of each case resource for machine learning & teaching

SUBCUTIS

 \rightarrow Data release to the community

Striated Muscle Rhabdomyosarcoma

Adipose tissue Spindle cell/pleomorphic lipoma, Pleomorphic Liposarcoma

Apocrine and Eccrine sweat glands

Poroma, Syringoma, Hidradenoma, Mixed tumour, Myoepithelioma, Syringocystadenoma papilliferum, Hidradenoma papilliferum, Tubular apocrine adenoma, Porocarcinoma, Microcystic adnexal carcinoma, Endocrine mucin-producing sweat gland carcinoma, Digital papillary adenocarcinoma, Squamoid eccrine ductal carcinoma, Eccrine ductal carcinoma, Malignant mixed tumour, Malignant myoepithelioma, Hidradenocarcinoma, Mucinous carcinoma, Apocrine carcinoma, Cribriform carcinoma, Polymorphous sweat gland carcinoma

Nerve (& neuroectoderm)

Solitary Circumscribed Neuroma, Perineurioma, Epithelioid schwannoma, Epithelioid MPNST, Cellular neurothecoma, Cutaneous Ewing sarcoma

Arteriole

Venule

Glomus tumour, Angioleiomyoma, Myopericytoma, Myofibroma, Epithelioid Angiomatous Nodule, Microvenular/Hobnail/Glomeruloid/Spindle cell/Tufted Hemangioma, Atypical Vascular Lesion, Kaposiform/Retiniform hemangioendothelioma, Cutaneous (epithelioid) angiosarcoma, Malignant glomus tumour

Collaborators

Germany

Prof. Michael Tetzlaff

Samples collection

ALPK1 hotspot mutation as a driver of human spiradenoma and spiradenocarcinoma

Spiradenoma

Well demarcated and encapsulated solitary nodule

Intensely basophilic

In the dermis or subcutis

Dilated blood and lymphatic vessels + lymphs

sweat gland-derived

Spiradenoma

Two cell types – clear and dark

Clear cells (centre). Dark cells (peripheral)

Ductal differentiation

Low-grade spiradenocarcinoma

Easily mistaken for spiradenoma Loss of dual population Monotonous epithelial cells

Mild-moderate atypia

High-grade spiradenocarcinoma

Cytological atypia

Sample diagnosis High-grade spiradenocarcinoma Low-grade spiradenocarcinoma Spiradenoma Benign precursor region Cylindroma Cylindroma-spiradenoma

N=52 tumour

Mutational Profile

Sample diagnosis

Benign precursor region

Cylindroma

Cylindroma-spiradenoma hybrid

Coloured bar indicates patient with multiple samples

CAP-Gly domain 🛛 Phosphorylation regio

OPEN In vitro kinase assay reveals ADP-heptose-dependent ALPK1 autophosphorylation and altered kinase activity of disease-associated ALPK1 mutants

> Diego García-Weber^{1,3}, Anne-Sophie Dangeard^{1,3}, Veronica Teixeira¹, Martina Hauke², Alexis Carreaux¹, Christine Josenhans² & Cécile Arrieumerlou^{1⊠}

-

TIFAsome

NFkB activation

Check for updates

Mutually exclusive genetic interactions and gene essentiality shape the genomic landscape of primary melanoma

Primary Melanoma

Whiteman DC et al, J Invest Dermatol 2015

hulun

dN/dScv

Missense mutation/Inframe deletion

Mutual exclusive genetic interaction

A. Copy number overview for Leeds primary melanoma cohort

8

2

75

20

S

0

20

22

Samples with gain or loss (%)

4

6

10

12

14 16 18 20 22

MELHO JACC257

Genome-wide CRISPR Screening

WM983B COL0800 SKMEL30

AB435S SKMEL24 A2058

K029AX

GR1 HS695T HS944T PC298

SOX10 BRAF MITE

SOX9

CRTC3 IRF4

BPTF MDM2

IGR39 RPMI7951 CJM

HT144

Chromosome

Melanoma essential genes in copy number amplified regions

jer

Molecular profiling of acral lentiginous melanoma in Mexican patients

Incidence of melanoma subtypes

Ossio R et al, Nature Reviews Cancer 2017

Mutational Profile

-2

n=73 samples 66 BR + 7 MX

CRISPR Screen

Drug Screen

-> in vivo modelling

Mucosal melanoma

Can we use cross-species approaches to define new drivers/ explore the biology of the disease?

Comparative genomics of mucosal melanoma

Mutational landscape of sebaceous tumours

Sebaceous Adenoma

Well circumscribed, Symmetrical

Multifocal epidermal connections

By courtesy Dr D. Franck

Sebaceous carcinoma

Extra-ocular &

Peri-ocular.

By courtesy Dr A. Leonard

Clinical details

Somatic mutations

Consequences IHC Site Descent abnormal_MLH1/PMS2 Ioss_MLH1 Ioss_MSH2/MSH6 Asian Missense_Mutation Frame_Shift_Ins no_loss genital_area = ocular_area Nonsense Mutation In Frame Del abnormal_MSH2 Ioss_MLH1/PMS2 Ioss_MSH6 head&neck trunk European loss MSH6/abnormal MSH2 Splice Site In Frame Ins abnormal MSH2/MSH6 loss MSH2 limbs Ioss MSH2/abnormal MSH6 Ioss PMS2/abnormal MLH1 Frame_Shift_Del Multi_Hit loss all

9740

Somatic mutations

Understanding cancer predisposing gene variants at scale

No variants in CDKN2A

Variant of uncertain significance (VUS) in CDK4

How do you respond?

Variants of Uncertain Significance (VUS)

Cost per genome

MAVE: Multiplex Assay of Variant Effect

 $A \rightarrow C$

G

Val → Ala Cys Pro

Phenotype

BAP1: BRCA-associated Protein-1

Melanoma case-control

Analysis of BAP1 in a population ascertained cohort

729AA

1AA

Conflicting interpretations 69 45 Benign Likely benign 632 **Uncertain significance** 868 Likely pathogenic 53 Pathogenic 173

BAP1: S98R. A clinical example

BAP1: S98R. A clinical example

BAP1-associated histopathology

Multi-nucleated melanocytes

Intranuclear pseudoinclusions

BAP1: S98R. A clinical example

No:

Multi-nucleated melanocytes

No:

Intranuclear pseudoinclusions

Function base-by-base

Results

Benign

Variant change between Day 4 and Day 21

Variant Change for Different Mutational Consequences

z-score p>0.01 o z-score p<0.01

BAP1: A clinical example

S98R is depleted in SGE assay, consistent with HA-Ub-VME assay

- AGC[S98]> AGA[R] & AGC[S98]> AGG[R] show strong depletion concordant missense change
- synonymous change of AGC[S98] > AGT[S] does not deplete significantly

BAP1 enzyme activity (HA-Ub-VME) seems directly linked to viability (SGE assay)

Familial melanoma

- 10-15% (1 in 20 patients) of all melanoma patients have familial melanoma
- Melanoma predisposition genes ٠
 - <10 predisposition genes known</p>
 - Patients & relatives at risk may lack indication for genetic counselling
- POT1-associated germline mutations → increased risk for familial melanoma

The wide spectrum of <i>POT1</i> gene variants correlates with multiple cancer types	
Oriol Calvete, Pablo Ga	rcia-Pavia, Fernando Domínguez, Gaelle Bougeard, Kristin Kunze, Andreas
Braeuninger, Alex Teule	, Adriana Lasa, Teresa Ramón y Cajal, Gemma Llort, Victoria Fernández, Conxi
Lázaro, Miguel Urioste	naturegenetics
European Journal of H	Explore our content Y Journal information Y
	nature > nature genetics > letters > article
	Published: 30 March 2014
	<i>POT1</i> loss-of-function variants predispose to
	familial melanoma
	Carla Daniela Robles-Espinoza, Mark Harland, [] David J Adams 🖂
	Potrony, M. <i>et.al.</i> (2015) Ann Trans

Med. Wong, K. et al. (2019) JAMA dermatology. Image: Rogers, H.W. et al. (2006) Arch

SGE - Dropout of different variant types

SGE Data Exon 4 (OB2 domain) – Change in cell death day 4 vs day 21

Published: 30 March 2014 Open Access | Published: 25 September 2015 POT1 loss-of-function variants predispose to familial A mutation in the *POT1* gene is responsible for cardiac angiosarcoma in TP53-negative Li-Fraumeni-like melanoma families Carla Daniela Robles-Espinoza, Mark Harland, ... David J Adams 🖂 🕇 Show authors Oriol Calvete, Paula Martinez, Pablo Garcia-Pavia, Carlos Benitez-Buelga, Beatriz Paumard-Hernández Nature Genetics 46, 478-481 (2014) Cite this article Victoria Fernandez, Fernando Dominguez, Clara Salas, Nuria Romero-Laorden, Jesus Garcia-Donas, Jaime Carrillo, Rosario Perona, Juan Carlos Triviño, Raquel Andrés, Juana María Cano, Bárbara Rivera, uis Alonso-Pulpon, Fernando Setien, Manel Esteller, Sandra Rodriguez-Perales, Gaelle Bougeard, Tierry Frebourg, Miquel Urioste 🖾, Maria A. Blasco 🖾 & Javier Benitez S Intron Exon Investigation of conformational dynamics of Tyr89Cys mutation in protection of telomeres 1 gene associated with familial melanoma Nobel Amir, Shahzalh Ahamad, Tai Mohammad 🙆 Deeha Shamim Jairainuri, Gulam Mustafa Hasan, Ravins Dohare VUS: R117C LogFC: -1 Asimul Islam. Faizan Ahmad & Md. Imtaiyaz Hassan 🐷 😳 💷 showless VUS: R137H LogFC: -Impact of Gln94Glu mutation on the structure and 0.91 function of protection of telomere 1, a cause of cutaneous familial melanoma not significant (n=810) Mohd, Amir, Shahnawaz Ahmad, Shahzaib Ahamad, Viav Kumar 🧿, Taj Mohammad 🧿, Ravins Dohare, Mohamed F, Alajmi, fabish Rehman, Afzal Hussain, Asimul Islam, Faizan Ahmad & Md. Imtaiyaz Hassan 🗃 😳 💷 showless VUS: Y89C LogFC: significant (n=494) D21 0.85 ٧S UF20 VUS: Q94E LogFC: -4 frameshift variant 1.3 inframe deletion . Uterus (40) CMM* logFC intron_variant Brain (60)* synonymous variant missense variant CMM ×6 (50) stop gained Breast (65) Tyr89Cys Ш -3 wт CMM ×8 (30) CMM (40) Tvr89Cvs Small cell lung (50) Tyr89Cys IV CMM (25) Tyr89Cys -4 -124863650 -124863600 -124863550 -124863700 -124863500 Leiden University Coordinate

Medical Center

The VUS problem across cancer predisposition genes

Ingrid Ferreira Louise van der Weyden Kim Wong Victoria Offord Alastair Droop Martin Del Castillo Velasco-Herrera Elisabeth Anderson

Collaborators Patients

www.dermatlasproject.org

@David_J_Adams

The Melanoma Genetics Consortium

da1@sanger.ac.uk

