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Anthology Outline   

Stories of The Past
• Mutational signatures as a machine learning approach that allows detecting the unusual 

patterns of somatic mutations.  

• Utilizing mutational signatures for developing cancer prevention strategies.

• Utilizing mutational signatures for understanding failed DNA repair and targeted cancer 
treatment.

Anecdotes of The Present
• Utilizing clustered mutations for understanding cancer development and evolution.

• The repertoire of copy-number signatures in human cancer. 

• A novel machine learning approach for detecting homologous recombination deficiency.

Dreams of The Future
• Beyond genomics: Utilizing AI for addressing inequalities of cancer diagnosis

HRD



Stories of The Past



Stories of a simpler, but not so distant, past

• Mutational signatures as a machine learning approach that 
allows detecting the unusual patterns of somatic mutations.

• Utilizing mutational signatures for developing cancer prevention 
strategies.

• Utilizing mutational signatures for understanding failed DNA 
repair and targeted cancer treatment.



Mutational signatures as a machine learning approach that allows 
detecting the unusual patterns of somatic mutations



Somatic Mutations, Mutational Signatures, and Human Cancer

• Somatic mutations accumulate daily in every cell of the human body. These mutations
originate from lifestyle choices, defective cellular machineries, and even from normal
cellular processes.

• Cancer risk is strongly affected by mutagenesis. Lifestyle choices can cause somatic
mutations and significantly affect the risk for developing cancer. For example, from 105
patients with lung squamous cell carcinomas only 1 has never smoked.

• Mutational signatures analysis is a machine learning approach that allows detecting the
unusual patterns of somatic mutations generated by different mutagenic processes from
DNA sequencing data.



Human cancers and their origins

Skin Cancer Majority caused by UV-light exposure 

Predominately C>T somatic mutations

Mutational signature: a molecular fingerprint found in a cancer cell
Alexandrov et al., Nature 2013



Human cancers and their origins

Lung Cancer ~80% caused by tobacco smoking

Predominately C>A somatic mutations

Alexandrov et al., Science 2015



Quantifying the mutations in a tobacco smoker

Alexandrov et al., Science 2015



How do we identify mutational signatures?

Develop and utilize state-of-the-art artificial intelligence 
algorithms for pattern recognition

Development of next-generation of algorithms for quantum 
computer

A Suite of Computational Tools
‒ SigProfilerMatrixGenerator

‒ SigProfilerMatrixGenerator2

‒ SigProfilerPlotting

‒ SigProfilerPlotting2

‒ SigProfilerSimulator

‒ SigProfilerExtractor

‒ SigProfilerClusters

‒ SigProfilerTopography

‒ SigProfilerAssignment

‒ fastNMF



Mutation Signatures in Human Cancer
Proposed Etiology:

APOBEC activity
Deamination of 5’methycytosine
Reactive oxygen species
Polymerase η activity
POLE mutation

Defective DNA MMR
Defective DNA BER
Defective DNA HRR

Temozolomide treatment
Platinum treatment
Azathioprine treatment

Haloalkane exposure
Aristolochic acid exposure
Aflatoxin exposure
Ultraviolet light exposure
Tobacco smoking

Alexandrov et al., Nature 2020



Utilizing mutational signatures for developing cancer prevention 
strategies



Putative Driver Mutations

Azathioprine, sold under the brand name Imuran among others, is an immunosuppressive medication.
Azathioprine is on the World Health Organization's List of Essential Medicines, the most effective and safe
medicines needed in a health system. Epidemiological studies by International Agency for Research on Cancer have
provided "sufficient" evidence of azathioprine carcinogenicity in humans (Group 1), although the methodology of
past studies and the possible underlying mechanisms are questioned.

(Somewhat) unexpected carcinogens: Azathioprine

Azathioprine MEF

Inman et al., Nature Communications 2018



Known carcinogen in unexpected cancer types: UV-light

B-Cell ALL
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Similarity extends to strand bias, dinucleotide, and indel patterns. Confirmed in three other cohorts.
Signature found only in white Caucasian children. Much lower mutation burden compared to skin cancer.

Ma et al., Nature 2018



2013

First map of 21 mutational signatures
identified in human cancer

Alexandrov et al., Nature 2013

9 novel mutational signatures identified
Signature 30 discovered; etiology/cause unknown

Alexandrov et al., Nature Genetics 2015

2015

2017

Signature 30 functionally 
associated with failure BER

due to defective NTHL1.
Drost et al., Science 2017

2019

Signature 30 found in 29 tumors from 7
organs in 17 families. NTHL1 germline
deficiency (SNPs & indels) found in all but
one patient.

Cancer Cell main conclusions:
“Mutational signature analyses can 
assist to identify germline DNA 
repair defects.”

”This study illustrates the power of 
mutational signature analysis in 
defining tumor phenotypes in rare 
cancer predisposition syndromes 
and provides proof-of-principle for 
recognizing new patients with 
cancer syndromes based on tumor 
sequence data.”

Grolleman et al., Cancer Cell 2019

Mutational Signatures for Discovery of Germline Predisposition Syndromes 



Utilizing mutational signatures for understanding failed DNA repair and 
targeted cancer treatment



Mutational signatures associated with failed DNA repair

*Proposed based on limited evidence
Figure adapted from Lord & Ashworth, Nature 2012
Alexandrov et al., 2020, Nature

Mutational
Signatures Of 
Failed Repair

SBS30
SBS36

SBS3
ID6
ID8

DBS7*

SBS5 SBS6/14/15
SBS20/21
SBS26/44
ID1/2/7
DBS10

SBS11*N/A



Mutational Signatures with Known Predictive Power



Utilizing signatures for detecting homologous recombination deficiency (HRD)

Microhomology-mediated 
End Joining (MMEJ)

Non-Homologous End 
Joining (c-NHEJ)

Homologous Recombination (HR)

,BRCA1



Utilizing signatures for detecting homologous recombination deficiency (HRD)

FDA Approved drugs for treating advanced-stage ovarian as well as metastatic breast and prostate cancers

PARPi leverages synthetic lethality to target HRD cancer cells

No DNA Repair



Examples of HRD Diagnostic Tests 
Laboratory Name Test Name HRD Status determined by Genes Assessed List Price

Foundation 
Medicine

BRCA1/BRCA2-positive or 
LOH ≥ 16 %

324 genes, including 
BRCA1 and BRCA2

$5,800

Myriad BRCA1/BRCA2-positive  
or GIS ≥ 42

2 genes: BRCA1, BRCA2 $4,040

Large State Transitions (LST)

chromosomal break between adjacent 
regions of at least 10 Mb 

Telomeric Allelic Imbalance

unequal number of parental and 
maternal alleles at the telomeres

Loss of Heterozygosity (LOH)

loss of one normal copy of a gene 
or a group of genes

Utilizing signatures for detecting homologous recombination deficiency (HRD)



Mutational signatures/Genomic footprint of HRD

Single base substitutions

Alexandrov et al. Nature 2013

Microhomology-mediated deletions

Alexandrov et al. Nature 2020

Structural Variations

Nik-Zainal et al. Nature 2016

Copy Number Alterations

Steele et al. Nature, 2022



HRD Prediction tools that use mutational signatures or 
mutational patterns

SigMA HRDetect CHORD

Tools

Sequencing Platform WGS, WES, Panels WGS WGS

Advantages &
Limitations

Method can be applied to 
WGS, WES, and panel data.

SBS3 is flat and method can be 
used only for highly mutated 
panels (~25% breast cancers).

Whole-genome sequencing is expensive approach especially at 
high-coverage. In many cases it requires fresh cancer tissues, and it 
is not commonly used in clinical practice. 

HRDetect & CHORD can detect ~50% more samples that will 
respond to PARPi when compared myChoice CDx. 

Gulhan, D. et al. Nat Genet (2019) Davies, H. et al. Nat Med (2017) Nguyen, L. et al. Nat Commun (2020)

Features SBS3 SBS3, SBS8, Microhomology-
mediated deletions, RS3, RS5

SBS, ID, and SV mutational  patterns



Example of applying an academic HRD tool to a breast cancer cohort

Staaf et al., Nature Medicine, 2019IDFS: invasive disease-free survival



Anecdotes of The Present



A brief look at the present with glimpses of the future

• Utilizing clustered mutations for understanding cancer 
development and evolution.

• The repertoire of copy-number signatures in human cancer. 

• A novel machine learning approach for detecting homologous 
recombination deficiency.



Utilizing clustered mutations for understanding cancer development and 
evolution

Erik Bergstrom



Bioengineering

A subset of mutations cluster in non-random fashion



Bioengineering

A subset of mutations cluster in non-random fashion

Mutations occur as single, independent
events randomly across the genome

Mutatio
nal 
Matrix



Bioengineering

Mutation rate is dependent on a range of genomic features

Buisson et al. 2019



Bioengineering
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Bioengineering

Mutation rate is dependent on a range of genomic features
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Bioengineering

Mutation rate is dependent on a range of genomic features

Buisson et al. 2019



Bioengineering

Mutation rate is dependent on a range of genomic features

Buisson et al. 2019



Bioengineering

Classification of clustered mutations

Bergstrom et al., Nature 2022



Bioengineering
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Bioengineering

Classification of clustered mutations
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Bioengineering

Classification of clustered mutations

Bergstrom et al., Nature 2022



Bioengineering

The landscape of clustered mutations across human cancer

Bergstrom et al., Nature 2022
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Bioengineering

The landscape of clustered mutations across human cancer
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Bioengineering

The landscape of clustered mutations across human cancer

Bergstrom et al., Nature 2022



Bioengineering

Mutational processes underlying clustered events

Bergstrom et al., Nature 2022
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Mutational processes underlying clustered events

Bergstrom et al., Nature 2022



Bioengineering

Mutational processes underlying clustered events

Bergstrom et al., Nature 2022



Bioengineering

Mutational processes underlying clustered events

HRD

Bergstrom et al., Nature 2022



Bioengineering

Panorama of clustered driver mutations in human cancer

Bergstrom et al., Nature 2022



Bioengineering

Panorama of clustered driver mutations in human cancer

Bergstrom et al., Nature 2022



Bioengineering

Clustered mutations in driver genes serve as a prognostic biomarker

Bergstrom et al., Nature 2022



Bioengineering

Clustered mutations in driver genes serve as a prognostic biomarker

Bergstrom et al., Nature 2022



Bioengineering

The repertoire of copy-number signatures in human cancer

Chris Steele



Bioengineering

Global view of copy number changes in human cancer

Steele et al., Nature, 2022



Bioengineering

From copy-number profiles to summarized copy-number patterns (example 1)

Steele et al., Nature, 2022



Bioengineering

From copy-number profiles to summarized copy-number patterns (example 2)

Steele et al., Nature, 2022



Bioengineering

From copy-number profiles to copy-number mutational signatures

Steele et al., Nature, 2022



Bioengineering

Copy-number mutational signatures across human and their etiologies

Steele et al., Nature, 2022



Bioengineering

Clinical utility of copy-number mutational signatures as prognostic biomarkers

Steele et al., Nature, 2022



Bioengineering

Clinical utility of copy-number mutational signatures as prognostic biomarkers

In contrast to other types of 
mutational signatures can be 
robustly detected from multiple 
platforms:

• Whole-genome sequencing

• Whole-exome sequencing

• Reduced-representation 
bisulfite sequencing

• Single-cell DNA sequencing

• SNP6 microarrays

Steele et al., Nature, 2022



Bioengineering

A novel machine learning approach for detecting homologous 
recombination deficiency

Ammal Abbasi



HRD Prediction tools that use mutational signatures or 
mutational patterns

SigMA HRDetect CHORD

Tools

Sequencing Platform WGS, WES, Panels WGS WGS

Advantages &
Limitations

Method can be applied to 
WGS, WES, and panel data.

SBS3 is flat and method can be 
used only for highly mutated 
panels (~15% breast cancers).

Whole-genome sequencing is expensive approach especially at 
high-coverage. In many cases it requires fresh cancer tissues, and it 
is not commonly used in clinical practice. 

HRDetect & CHORD can detect ~50% more samples that will 
respond to PARPi when compared myChoice CDx. 

Gulhan, D. et al. Nat Genet (2019) Davies, H. et al. Nat Med (2017) Nguyen, L. et al. Nat Commun (2020)

Features SBS3 SBS3, SBS8, Microhomology-
mediated deletions, RS3, RS5

SBS, ID, and SV mutational  patterns



Training iHRD with breast cancer samples

Training dataset: 234 genomically quiescent whole-genome sequenced breast cancer 
samples used as homologous recombination proficient (HRP). 77 BRCA1 or BRCA2 
deficient whole-genome sequenced breast cancer samples used as homologous 
recombination deficient (HRD). 

Testing dataset (WGS): 370 whole-genome sequenced breast cancer samples (77 HRD & 
293 HRP).

Independent validation dataset (WGS): 237 whole-genome sequenced triple-negative 
breast cancer samples (95 HRD & 142 HRP).

Independent validation dataset (WES): TCGA breast and ovarian whole-exome 
sequenced samples with consensus HRD and HRP status.



Classifier performance on test dataset (370 WGS samples)



Classifier performance on validation dataset (237 WGS TNBC)



Model performance on validation WGS dataset 
across HRD genomic tools

iHRD SigMA

HRDetectCHORD

iHRD



Model performance on validation WES dataset 
across HRD genomic tools

TCGA-BRCA
iHRD

TCGA-OV
iHRD

iHRD uses model trained on whole-genome sequenced breast cancers.
SigMA uses tissue-specific models trained on whole-exome sequencing data.



Applying iHRD to exome sequenced cell lines with 
PARPi response

HRP

Talazoparib

HRD

Olaparib

HRP HRD



Applying iHRD to exome sequenced retrospective 
clinical cohorts

Breast Cancers & Platinum Therapy

(iHRD+; n=88)
(iHRD-; n=84)

(iHRD+; n=15)
(iHRD-; n=47)

Ovarian Cancers & Platinum Therapy

iHRD+; n=59
iHRD-; n=41



Ongoing iHRD work

• Applying to a breast cancer clinical cohort with known response to PARPi

• Applying to a prostate cancer clinical cohort with known response to PARPi

• Applying to a uterine sarcoma clinical cohort with known response to PARPi

• Working on extending its applicability to panel sequencing data



Dreams of The Future



Bioengineering

Beyond genomics: Utilizing AI for addressing inequalities of cancer 
diagnosis

Erik Bergstrom



Bioengineering

The Widespread Inequality in Cancer Diagnosis

• NGS profiling is not available to all patients in the US and access 
outside the US is very limited

• Adoption of proven companion diagnostics is low due to cost:

– Lung cancer biomarkers testing was first approved by the FDA in 
2004 

– Recent data show that NGS testing rates in the US for the 5 SOC 
biomarkers is <50% overall. 
Roberts, N et al on behalf of the MYLUNG Consortium™ Collaborators: The US Oncology Network & Sponsors. ASCO Meeting, 
June 2021
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**Bruno et al.; Roberts et al.,    
Lung Cancer, ASCO, June 2021

(p < 0.0001) 



Bioengineering

Convolutional neural network to automatically extract image features

FFPE and frozen



Bioengineering
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Convolutional neural network to detect biomarkers from histopathological slides
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Convolutional neural network to detect biomarkers from histopathological slides
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Convolutional neural network to detect biomarkers from histopathological slides



Bioengineering

Convolutional neural network to detect biomarkers from histopathological slides



Bioengineering

Training a DeepHRD prediction model for detecting HRD from digital H&E slides 



Bioengineering
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Training a DeepHRD prediction model for detecting HRD from digital H&E slides 



Bioengineering

Applying a trained DeepHRD model for predicting HRD from digital H&E slides 



Bioengineering

Comparing DeepHRD detection power to the score of a molecular test in primary breast cancer



Bioengineering

Comparing DeepHRD detection power to the score of a molecular test in primary breast cancer



Bioengineering

Predicting platinum response in metastatic breast cancer (MBC) with DeepHRD



Bioengineering

Predicting platinum response in metastatic breast cancer (MBC)with DeepHRD



Bioengineering

Predicting platinum response in metastatic breast cancer (MBC) with DeepHRD



Bioengineering

DeepHRD transfer learning predicts platinum response in ovarian cancer



Bioengineering

DeepHRD transfer learning predicts platinum response in ovarian cancer



Bioengineering

Looking towards the future for detecting HRD score and other predictive biomarkers

Cancer Patient
(Breast/Ovarian/Pancreas)

Cancer Removed
Standard H&E Staining

~14 days
$$$

Genomic Report

DeepHRD Prediction 
Detected Immediately
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Stories of The Past
• Mutational signatures as a machine learning approach that allows detecting the unusual 

patterns of somatic mutations.  

• Utilizing mutational signatures for developing cancer prevention strategies.

• Utilizing mutational signatures for understanding failed DNA repair and targeted cancer 
treatment.

Anecdotes of The Present
• Utilizing clustered mutations for understanding cancer development and evolution.

• The repertoire of copy-number signatures in human cancer. 

• A novel machine learning approach for detecting homologous recombination deficiency.

Dreams of The Future
• Beyond genomics: Utilizing AI for addressing inequalities of cancer diagnosis

HRD
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